The acid strength of the HClO4/n(AlF3) and HClO4/n(SbF5) (n = 1–3) Lewis–Brønsted superacids containing the excess of the Lewis acid component

Regular Article
  • 44 Downloads

Abstract

The acidic strength of selected Lewis–Brønsted superacids consisting of HClO4 Brønsted acid and containing the excess of either AlF3 or SbF5 Lewis acid component is evaluated on the basis of theoretical calculations employing ab initio methods. The Gibbs free energies of deprotonation processes for HClO4/n(AlF3) and HClO4/n(SbF5) (n = 1–3) are found to depend on the number (n) of AlF3 or SbF5 molecules (playing Lewis acid role) surrounding the HClO4 system. The successive attachment of either AlF3 or SbF5 molecules to HClO4 gradually increases the acidity strength of the resulting superacid which leads to the saturation achieved for 2–3 AlF3 molecules interacting with Brønsted acid. The preference of formation of the Lewis acid aggregates is observed during the analysis of the most stable HClO4/n(AlF3) and HClO4/n(SbF5) isomeric structures. The mixing ratios of HClO4 and either AlF3 or SbF5 compounds that should likely maximize their resulting acid strength are proposed and discussed.

Keywords

Lewis–Brønsted superacids Acid strength Deprotonation 

Notes

Acknowledgements

This research was supported by the Polish Ministry of Science and Higher Education Grant No. DS 530-8375-D499-18. The calculations have been carried out using resources provided by Wroclaw Centre for Networking and Supercomputing (http://wcss.pl) Grant Nos. 435 and 455.

References

  1. 1.
    Gillespie RJ, Peel TE (1971) Adv Phys Org Chem 9:1–24Google Scholar
  2. 2.
    Gillespie RJ, Peel TE (1973) J Am Chem Soc 95:5173–5178CrossRefGoogle Scholar
  3. 3.
    Hall NF, Conant JB (1927) J Am Chem Soc 49:3047–3061CrossRefGoogle Scholar
  4. 4.
    Olah GA, Lukas J (1967) J Am Chem Soc 89:2227–2228CrossRefGoogle Scholar
  5. 5.
    Bickel AF, Gaasbeek CJ, Hogeveen H, Oelderik JM, Platteeuw JC (1967) J Chem Soc, Chem Commun 13:634–635Google Scholar
  6. 6.
    Hogeveen H, Bickel AF (1967) J Chem Soc, Chem Commun 13:635–636Google Scholar
  7. 7.
    Olah GA, Schlosberg RH (1968) J Am Chem Soc 90:2726–2727CrossRefGoogle Scholar
  8. 8.
    Hogeveen H, Bickel AF (1969) Recl Trav Chim Pays-Bas 88:371–378CrossRefGoogle Scholar
  9. 9.
    Olah GA, Halpern Y, Shen J, Mo YK (1971) J Am Chem Soc 93:1251–1256CrossRefGoogle Scholar
  10. 10.
    Otto AH, Steiger T, Schrader S (1998) Chem Commun 3:391–392CrossRefGoogle Scholar
  11. 11.
    Koppel IA, Burk P, Koppel I, Leito I, Sonoda T, Mishima M (2000) J Am Chem Soc 122:5114–5124CrossRefGoogle Scholar
  12. 12.
    Gutowski KE, Dixon DA (2006) J Phys Chem A 110:12044–12054CrossRefGoogle Scholar
  13. 13.
    Srivastava AK, Misra N (2015) Polyhedron 102:711–714CrossRefGoogle Scholar
  14. 14.
    Axhausen J, Ritter C, Lux K, Kornath A (2013) Z Anorg Allg Chem 639:65–72CrossRefGoogle Scholar
  15. 15.
    Bour C, Guillot R, Gandon V (2015) Chem Eur J 21:6066–6069CrossRefGoogle Scholar
  16. 16.
    Olah GA, Prakash GK, Sommer J (1979) Science 206:13–20CrossRefGoogle Scholar
  17. 17.
    Touiti D, Jost R, Sommer J (1986) J Chem Soc Perkin Trans 2:1793–1797CrossRefGoogle Scholar
  18. 18.
    Jost R, Sommer J (1988) Rev Chem Intermed 9:171–199CrossRefGoogle Scholar
  19. 19.
    Axhausen J, Lux K, Kornath A (2014) Angew Chem Int Eng Ed 53:3720–3721CrossRefGoogle Scholar
  20. 20.
    Sikorska C, Freza S, Skurski P (2010) J Phys Chem A 114:2235–2239CrossRefGoogle Scholar
  21. 21.
    Czapla M, Skurski P (2015) Chem Phys Lett 630:1–5CrossRefGoogle Scholar
  22. 22.
    Czapla M, Skurski P (2015) J Phys Chem A 119:12868–12875CrossRefGoogle Scholar
  23. 23.
    Czapla M, Skurski P (2015) Phys Chem Chem Phys 17:19194–19201CrossRefGoogle Scholar
  24. 24.
    Senger S, Radom L (2000) J Phys Chem A 104:7375–7385CrossRefGoogle Scholar
  25. 25.
    Zhong G, Chan B, Radom L (2009) Org Lett 11:749–751CrossRefGoogle Scholar
  26. 26.
    Gutsev GL, Boldyrev AI (1981) Chem Phys 56:277–283CrossRefGoogle Scholar
  27. 27.
    Wang XB, Ding CF, Wang LS, Boldyrev AI, Simons J (1999) J Chem Phys 110:4763–4771CrossRefGoogle Scholar
  28. 28.
    Czapla M, Anusiewicz I, Skurski P (2016) Chem Phys 465–466:46–51CrossRefGoogle Scholar
  29. 29.
    Czapla M, Skurski P (2018) Int J Quantum Chem 118:e25494CrossRefGoogle Scholar
  30. 30.
    Czapla M, Anusiewicz I, Skurski P (2016) RSC Adv 6:29314–29325CrossRefGoogle Scholar
  31. 31.
    Rybacka O, Czapla M, Skurski P (2017) Phys Chem Chem Phys 19:18047–18054CrossRefGoogle Scholar
  32. 32.
    Rybacka O, Czapla M, Skurski P (2017) Theor Chem Acc 136:140CrossRefGoogle Scholar
  33. 33.
    Bacon J, Dean PAW, Gillespie RJ (1970) Can J Chem 48:3413–3424CrossRefGoogle Scholar
  34. 34.
    Wilson WW, Thompson RC, Aubke F (1980) Inorg Chem 19:1489–1493CrossRefGoogle Scholar
  35. 35.
    Faggiani R, Kennepohl DK, Lock CJL, Schrobilgen GJ (1986) Inorg Chem 25:563–571CrossRefGoogle Scholar
  36. 36.
    Møller C, Plesset MS (1934) Phys Rev 46:618–622CrossRefGoogle Scholar
  37. 37.
    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506CrossRefGoogle Scholar
  38. 38.
    Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275–280CrossRefGoogle Scholar
  39. 39.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  40. 40.
    Dunning TH Jr, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244CrossRefGoogle Scholar
  41. 41.
    Peterson KA (2003) J Chem Phys 119:11099CrossRefGoogle Scholar
  42. 42.
    Sergeeva AP, Averkiev BB, Zhai HJ, Boldyrev AI, Wang LS (2011) J Chem Phys 134:224304CrossRefGoogle Scholar
  43. 43.
    Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218CrossRefGoogle Scholar
  44. 44.
    Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073CrossRefGoogle Scholar
  45. 45.
    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746CrossRefGoogle Scholar
  46. 46.
    Carpenter JE, Weinhold F (1988) J Mol Struct 46:41–62CrossRefGoogle Scholar
  47. 47.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  48. 48.
    Gaussian 09, Revision A02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc Wallingford CTGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Quantum Chemistry, Department of Theoretical Chemistry, Faculty of ChemistryUniversity of GdańskGdańskPoland

Personalised recommendations