Structural and energetic properties of tautomeric forms of phosphonyl thioamides

  • Riadh Hanachi
  • Salima Boughdiri
  • Ridha Ben Said
  • Gilberte Chambaud
  • Majdi Hochlaf
Regular Article
  • 67 Downloads

Abstract

Stable tautomeric forms in a series of phosphonyl thioamides have been studied using DFT methods. The molecules studied in this contribution present a phosphonyl group in β-position of the C–S bond connected to the amine group. The three most stable tautomeric forms with double bonds on either C=N, C=S, or adjacent C=C have been described, and their relative energies together with the transition barriers have been evaluated. In such molecules a six-member ring can be formed by a hydrogen bond between the oxygen of the phosphonyl group and the H–N bond of the thioamide. The tautomeric form involving a C=N double bond is found less stable than the two other forms by more than 10 kcal/mol. The transition barriers between the various tautomers are calculated to be as large as 40 kcal/mol for the isolated molecules, but less than 30 kcal/mol in the presence of one water molecule. Similar results are obtained with various substituents on the phosphorus or on the nitrogen atom. Electronic vertical spectra have been calculated using the TD-DFT approach for the three stable tautomeric forms in a series of six substituted phosphonyl thioamides, and it is found that the signature of each tautomer is sufficiently specific to allow for their clear identification in a mixture using UV–Vis spectroscopy.

Keywords

DFT calculations Thioamides Tautomerization 

Supplementary material

214_2018_2234_MOESM1_ESM.docx (2.6 mb)
Supplementary material 1 (DOCX 2640 kb)

References

  1. 1.
    Brown K, Cater DP, Cavalla JF, Green D, Newberry RA, Wilson AB (1974) J Med Chem 17:1177–1181CrossRefGoogle Scholar
  2. 2.
    Srivastava PC, Pickering MV, Allen LB, Streeter DG, Campbell MT, Witkowski JT, Sidwell RW, Robins RK (1977) J Med Chem 20:256–262CrossRefGoogle Scholar
  3. 3.
    Wagner G, Voigt B, Vieweg H (1984) Pharmazie 39:226–230Google Scholar
  4. 4.
    Takahata H, Yamazaki T (1988) Heterocycles 27:1953–1973CrossRefGoogle Scholar
  5. 5.
    Fajardo TT, Guinto RS, Cellona RV, Abalos RM, Dela Cruz EC, Gelber RH (2006) Am J Trop Med Hyg 74:457–461Google Scholar
  6. 6.
    Vieira RP, Thompson JR, Beraldo H, Storr T (2015) Acta Crystallogr C Struct Chem 71:430–434CrossRefGoogle Scholar
  7. 7.
    Raper ES (1985) Coord Chem Rev 61:115–184CrossRefGoogle Scholar
  8. 8.
    Raper ES (1996) Coord Chem Rev 153:199–255CrossRefGoogle Scholar
  9. 9.
    Campbell MJM (1975) Coord Chem Rev 15:279–319CrossRefGoogle Scholar
  10. 10.
    Padhye S, Kauffman GB (1985) Coord Chem Rev 63:127–160CrossRefGoogle Scholar
  11. 11.
    West DX, Padhye SB, Sonawane PB (1991) Struct Bond 76:4Google Scholar
  12. 12.
    West DX, Liberta AE, Padhye SB, Chilate RC, Sonawane PB, Kumbhar AS, Yerande RG (1993) Coord Chem Rev 123:49–71CrossRefGoogle Scholar
  13. 13.
    Artis DR, Lipton MA (1998) J Am Chem Soc 120:12200–12206CrossRefGoogle Scholar
  14. 14.
    Klimesova V, Svoboda M, Karel Waisser K, Kaustova J, Buchta V, Kralova K (1999) Eur J Med Chem 34:433–440 (and references cited therein) CrossRefGoogle Scholar
  15. 15.
    Bahadir M, Nitz S, Parlar H, Korte F (1979) J Agric Food Chem 27:815–818CrossRefGoogle Scholar
  16. 16.
    Schaumann E (1991) In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, vol 6. Pergamon Press, Oxford, pp 419–434CrossRefGoogle Scholar
  17. 17.
    Gompper R, Elser W (1973) Org Synth 5:780Google Scholar
  18. 18.
    Schwarz G (1955) Org Synth 3:332Google Scholar
  19. 19.
    Taylor EC, Zoltewicz JA (1960) J Am Chem Soc 82:2656–2657CrossRefGoogle Scholar
  20. 20.
    Walter W, Bode KD (1966) Angew Chem Int Ed Engl 5:447–461CrossRefGoogle Scholar
  21. 21.
    Hurd RN, DeLaMater G (1961) Chem Rev 61:45–86CrossRefGoogle Scholar
  22. 22.
    Kindler K, Burghard F (1923) Liebigs Ann Chem 431:201CrossRefGoogle Scholar
  23. 23.
    Stephen AM, Bradley RS, Cotson S, Cox EG, Gerrard W, Thrush AM, Fairfull AES, Lowe JL, Peak DA (1952) J Chem Soc 738–744Google Scholar
  24. 24.
    Cassar L, Panossian S, Giordano C (1978) Synthesis 12:917–919CrossRefGoogle Scholar
  25. 25.
    Liboska R, Zyka D, Bobek M (2002) Synthesis 12:1649–1651Google Scholar
  26. 26.
    Manaka A, Sato M (2005) Synth Commun 35:761–764CrossRefGoogle Scholar
  27. 27.
    Kaboudin B, Elhamifar D (2006) Synthesis 2:224–226CrossRefGoogle Scholar
  28. 28.
    Jalloul I, Efrit ML, Ben Akacha A (2012) J Soc Chim Tunis 14:21–28Google Scholar
  29. 29.
    Jalloul I, Hachicha M, Kammoun M, Efrit ML, Ben Akacha A (2014) Phosphorus Sulfur Silicon Relat Elem 189:1596–1602CrossRefGoogle Scholar
  30. 30.
    Jalloul I, Efrit ML, Ben Akacha A (2015) Phosphorus Sulfur Silicon Relat Elem 190:422–428CrossRefGoogle Scholar
  31. 31.
    Mangiatordi GF, Brémond E, Adamo C (2012) J Chem Theory Comput 8:3082–3088CrossRefGoogle Scholar
  32. 32.
    Sancho-García JC, Adamo C (2013) Phys Chem Chem Phys 15:14581–14594CrossRefGoogle Scholar
  33. 33.
    Brémond E, Savarese M, Su NQ, Pérez-Jiménez ÁJ, Xu X, Sancho-García JC, Adamo C (2016) J Chem Theory Comput 12:459–465CrossRefGoogle Scholar
  34. 34.
    Fogarasi G (2010) J Mol Struct 978:257–262CrossRefGoogle Scholar
  35. 35.
    Laurent AD, Jacquemin D (2013) Int J Quant Chem 113:2019–2039CrossRefGoogle Scholar
  36. 36.
    Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  37. 37.
    Gross EKU, Dreizler RM (1995) Density functional theory. Springer, BerlinCrossRefGoogle Scholar
  38. 38.
    March NH (1997) Electron density theory of atoms and molecules. Elsevier Science & Technology Books, AmsterdamGoogle Scholar
  39. 39.
    Fiolhais C, Nogueira F, Marques M (2003) A primer in density functional theory. Springer, BerlinCrossRefGoogle Scholar
  40. 40.
    Martin RM (2004) Electronic structure basic theory and practical methods. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  41. 41.
    Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G.A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2013) Gaussian, Inc., Wallingford, CTGoogle Scholar
  42. 42.
    Zhao Y, Truhlar DG (2005) Phys Chem Chem Phys 7:2701–2705CrossRefGoogle Scholar
  43. 43.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  44. 44.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  45. 45.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  46. 46.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  47. 47.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  48. 48.
    Grimme S (2006) J Chem Phys 124:034108CrossRefGoogle Scholar
  49. 49.
    Grimme S, Antony J, Ehrlich S, Krieg HJ (2010) Chem Phys 132:154104Google Scholar
  50. 50.
    Fukui K (1981) Acc Chem Res 14:363–368CrossRefGoogle Scholar
  51. 51.
    Klamt A, Schüürmann GJ (1993) Chem Soc Perkin Trans 2:799CrossRefGoogle Scholar
  52. 52.
    Andzelm J, Kölmel C, Klamt AJ (1995) Chem Phys 103:9312–9320Google Scholar
  53. 53.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001CrossRefGoogle Scholar
  54. 54.
    Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681CrossRefGoogle Scholar
  55. 55.
    Jamorski C, Casida ME, Salahub DR (1996) J Chem Phys 104:5134CrossRefGoogle Scholar
  56. 56.
    Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76:1212CrossRefGoogle Scholar
  57. 57.
    Petersilka M, Gross EKU (1996) Int J Quantum Chem Symp 30:181Google Scholar
  58. 58.
    Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464CrossRefGoogle Scholar
  59. 59.
    Thanthiriwatte KS, Hohenstein EG, Burns LA, Sherrill CD (2011) J Chem Theory Comput 7:88–96CrossRefGoogle Scholar
  60. 60.
    Boulmène R, Prakash M, Hochlaf M (2016) Phys Chem Chem Phys 18:29709–29720CrossRefGoogle Scholar
  61. 61.
    Du B, Zhang W (2016) Chem Phys Lett 660:22–26CrossRefGoogle Scholar
  62. 62.
    Valadbeigi Y, Ilbeigi V, Tabrizchi M (2015) Comput Theor Chem 1061:27–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département de ChimieFaculté des Sciences de Tunis El ManarRommana, TunisTunisia
  2. 2.Laboratoire Modélisation et Simulation Multi Echelle, MSME, UMR 8208, CNRSUniversité Paris-EstMarne-la-ValléeFrance

Personalised recommendations