Theoretical perspectives on carbocation chemistry from energy decomposition analysis

Regular Article
  • 63 Downloads

Abstract

Understanding carbocation formation is a central concern for all chemical sciences. The widely accepted explanation in terms of inductive/field and delocalization effects is based on quantities that are not straightforwardly computed in popular electronic structure methods. This work reports an alternative approach to the carbocation formation problem based on energy decomposition analysis, more specifically, CMOEDA. The order of stability for carbocations formation was successfully accounted in terms of the energy components. The focus of the analysis shifts from the product of the reaction, i.e., the carbocation itself, to the reactant neutral molecule. Notably, exchange repulsions are the largest energy contribution to increase carbocation stability in the order methyl, primary, secondary and tertiary. Polarization (orbital relaxation) plays a secondary role. Insertion of bulky groups increases the repulsion with the incipient anion (a hydride ion) and decreases the strength of the C–H bond. This pattern is confirmed for several other hydrocarbon cases. Additional systems like halomethanes, amino- and nitro-derivatives are also described.

Keywords

Carbocations CMOEDA Energy decomposition analysis (EDA) Theoretical study 

References

  1. 1.
    Aue DH (2011) Wiley Interdiscip Rev Comput Mol Sci 1:487–508CrossRefGoogle Scholar
  2. 2.
    Naredla RR, Klumpp DA (2013) Chem Rev 113:6905–6948CrossRefGoogle Scholar
  3. 3.
    Olah GA (2001) J Org Chem 66:5944–5957Google Scholar
  4. 4.
    Alamiddine A, Humbel S (2014) Front Chem 1:1–9CrossRefGoogle Scholar
  5. 5.
    Jalife S, Martínes-Guajardo G, Zavala-Oseguera C, Fernández-Herrera M, Schleyer P, Merino G (2014) Eur J Org Chem 7955–7959Google Scholar
  6. 6.
    Sandbeck DJS, Markewich DJ, East ALL (2016) J Org Chem 81:1410–1415CrossRefGoogle Scholar
  7. 7.
    Moss R (2014) J Phys Org Chem 27:374–379CrossRefGoogle Scholar
  8. 8.
    Chiavarino B, Crestoni ME, Fornarini S, Lemaire J, Aleese LM, Maître P (2004) ChemPhysChem 5:1679–1685CrossRefGoogle Scholar
  9. 9.
    Robbins AM, Jin P, Brinck T, Murray JS, Politzer P (2006) Int J Quantum Chem 106:2904–2909CrossRefGoogle Scholar
  10. 10.
    Morokuma K (1971) J Chem Phys 55:1236–1244CrossRefGoogle Scholar
  11. 11.
    Lynch K, Maloney A, Sowell A, Wang C, Mo Y, Karty JM (2015) Phys Chem Chem Phys 17:138–144CrossRefGoogle Scholar
  12. 12.
    Su P, Li H (2009) J Chem Phys 131:014102-1–014102-15Google Scholar
  13. 13.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967CrossRefGoogle Scholar
  14. 14.
    Stasyuk OA, Szatylowicz H, Krygowski TM, Fonseca Guerra C (2016) Phys Chem Chem Phys 18:11624–11633CrossRefGoogle Scholar
  15. 15.
    Dancini-Pontes I, Fernandes-Machado N, Souza M, Pontes RM (2015) App Catal A 491:86–93CrossRefGoogle Scholar
  16. 16.
    Banu T, Ghosh D, Debnath T, Sen K, Das AK (2015) RSC Adv 5:57647–57656CrossRefGoogle Scholar
  17. 17.
    Baranac-Stojanović M (2015) Struct Chem 26:989–996CrossRefGoogle Scholar
  18. 18.
    Aleksić J, Stojanović M, Baranac-Stajanović M (2015) J Org Chem 80:10197–10207CrossRefGoogle Scholar
  19. 19.
    Karir G, Fatima M, Viswanathan KS (2016) J Chem Sci 128:1557–1569CrossRefGoogle Scholar
  20. 20.
    Thellamurege N, Hirao H (2013) Molecules 18:6782–6791CrossRefGoogle Scholar
  21. 21.
    Pontes RM, Basso EA, Martins DE, Madeira RM (2017) J Phys Chem A 121:4993–5004CrossRefGoogle Scholar
  22. 22.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  23. 23.
    Kiprof P, Miller SR, Frank MA (2006) J Mol Struct (THEOCHEM) 764:61–67CrossRefGoogle Scholar
  24. 24.
    Pople JA (1987) Chem Phys Lett 137:10–12CrossRefGoogle Scholar
  25. 25.
    Curtiss LA, Pople JA (1998) J Chem Phys 88:7405–7409CrossRefGoogle Scholar
  26. 26.
    Liang C, Hamilton TP, Schaefer HF (1990) J Chem Phys 92:3653–3658CrossRefGoogle Scholar
  27. 27.
    Psciuk BT, Bendererskii VA, Schlegel HB (2007) Theor Chem Acc 118:75–80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidade Estadual de MaringáMaringáBrazil

Personalised recommendations