Advertisement

Porous silicene and silicon graphenylene-like surfaces: a DFT study

  • G. S. L. Fabris
  • N. L. Marana
  • E. Longo
  • J. R. SambranoEmail author
Regular Article
Part of the following topical collections:
  1. In Memoriam of Claudio Zicovich

Abstract

Nanoporous single-layers surfaces derived from silicene, named porous silicene (PS) and silicenylene (SC) have been studied via periodic density functional theory with a modified B3LYP functional combined with an all-electron Gaussian basis set. The structural, elastic, electronic and vibrational properties of these nanoporous surfaces were simulated and analyzed. The results show that both PS and SC structures had a non-null band gap and a buckled structure such as pristine silicene, besides that they are more susceptible to longitudinal and transversal deformation than silicene. The large and well-defined porous diameter of PS and SC can bring new applications, such as gas separation, filtering and as anode material for lithium-ion batteries. These results are a challenge for the experimentalists to synthetize these new nanomaterials, comparing their properties with those described in this work.

Keywords

Nanoporous Silicene Graphene-like Porous silicene Modified functional B3LYP* 

Notes

Acknowledgements

This work was supported by the Brazilian funding agencies CNPq (Grant No. 46126-4), CAPES (Grant Nos. 787027/2013, 8881.068492/2014-01), and FAPESP (Grant Nos. 2013/07296-2, 2016/07476-9, 2016/25500-4). The computational facilities were supported by resources supplied by the Molecular Simulations Laboratory, São Paulo State University, Bauru, Brazil. We would also like to thank Prof. Claudio Zicovich-Wilson (in memoriam) for the initial collaboration and suggestions.

Supplementary material

214_2017_2188_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)

Supplementary material 2 (WMV 5286 kb)

References

  1. 1.
    Quhe R, Ma J, Zeng Z et al (2013) Tunable band gap in few-layer graphene by surface adsorption. Sci Rep 3:1794.  https://doi.org/10.1038/srep01794 CrossRefGoogle Scholar
  2. 2.
    Paupitz R, Autreto PAS, Legoas SB et al (2013) Graphene to fluorographene and fluorographane: a theoretical study. Nanotechnology 24:35706.  https://doi.org/10.1088/0957-4484/24/3/035706 CrossRefGoogle Scholar
  3. 3.
    Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565.  https://doi.org/10.1016/j.carbon.2007.02.034 CrossRefGoogle Scholar
  4. 4.
    Flores MZS, Autreto PAS, Legoas SB, Galvao DS (2009) Graphene to graphane: a theoretical study. Nanotechnology 20:465704.  https://doi.org/10.1088/0957-4484/20/46/465704 CrossRefGoogle Scholar
  5. 5.
    Ni ZH, Yu T, Lu YH et al (2008) Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2:2301–2305.  https://doi.org/10.1021/nn800459e CrossRefGoogle Scholar
  6. 6.
    Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5:26–41.  https://doi.org/10.1021/nn102598m CrossRefGoogle Scholar
  7. 7.
    Giovannetti G, Khomyakov PA, Brocks G et al (2008) Doping graphene with metal contacts. Phys Rev Lett 101:4–7.  https://doi.org/10.1103/PhysRevLett.101.026803 Google Scholar
  8. 8.
    Lalmi B, Oughaddou H, Enriquez H et al (2010) Epitaxial growth of a silicene sheet. Appl Phys Lett 97:223109.  https://doi.org/10.1063/1.3524215 CrossRefGoogle Scholar
  9. 9.
    Aufray B, Kara A, Vizzini S et al (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl Phys Lett 96:183102.  https://doi.org/10.1063/1.3419932 CrossRefGoogle Scholar
  10. 10.
    Dávila ME, Xian L, Cahangirov S et al (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16:95002.  https://doi.org/10.1088/1367-2630/16/9/095002 CrossRefGoogle Scholar
  11. 11.
    Durgun E, Tongay S, Ciraci S (2005) Silicon and III–V compound nanotubes: structural and electronic properties. Phys Rev B 72:75420.  https://doi.org/10.1103/PhysRevB.72.075420 CrossRefGoogle Scholar
  12. 12.
    Tao Y, Kanoh H, Abrams L, Kaneko K (2006) Mesopore-modified zeolites: preparation, characterization, and applications. Chem Rev 106:896–910.  https://doi.org/10.1021/cr040204o CrossRefGoogle Scholar
  13. 13.
    Stock N, Biswas S (2012) Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 112:933–969.  https://doi.org/10.1021/cr200304e CrossRefGoogle Scholar
  14. 14.
    Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641.  https://doi.org/10.1016/j.progpolymsci.2003.08.002 CrossRefGoogle Scholar
  15. 15.
    Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094.  https://doi.org/10.1002/adma.200501576 CrossRefGoogle Scholar
  16. 16.
    Bieri M, Treier M, Cai J et al (2009) Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem Commun.  https://doi.org/10.1039/b915190g Google Scholar
  17. 17.
    Li Y, Zhou Z, Shen P, Chen Z (2010) Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane. Chem Commun 46:3672.  https://doi.org/10.1039/b926313f CrossRefGoogle Scholar
  18. 18.
    Du A, Zhu Z, Smith SC (2010) Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations. J Am Chem Soc 132:2876–2877.  https://doi.org/10.1021/ja100156d CrossRefGoogle Scholar
  19. 19.
    Ding Y, Wang Y, Shi S, Tang W (2011) Electronic structures of porous graphene, BN, and BC2 N sheets with one- and two-hydrogen passivations from first principles. J Phys Chem C 115:5334–5343.  https://doi.org/10.1021/jp110336r CrossRefGoogle Scholar
  20. 20.
    Fabris GSL, Marana NL, Longo E, Sambrano JR (2017) Theoretical study of porous surfaces derived from graphene and boron nitride. J Solid State Chem.  https://doi.org/10.1016/j.jssc.2017.10.025 Google Scholar
  21. 21.
    Brunetto G, Autreto PAS, Machado LD et al (2012) Nonzero gap two-dimensional carbon allotrope from porous graphene. J Phys Chem C 116:12810–12813.  https://doi.org/10.1021/jp211300n CrossRefGoogle Scholar
  22. 22.
    Totani R, Grazioli C, Zhang T et al (2017) Electronic structure investigation of biphenylene films. J Chem Phys 146:54705.  https://doi.org/10.1063/1.4975104 CrossRefGoogle Scholar
  23. 23.
    Du Q-S, Tang P-D, Huang H-L et al (2017) A new type of two-dimensional carbon crystal prepared from 1,3,5-trihydroxybenzene. Sci Rep 7:40796.  https://doi.org/10.1038/srep40796 CrossRefGoogle Scholar
  24. 24.
    Yu Y-X (2013) Graphenylene: a promising anode material for lithium-ion batteries with high mobility and storage. J Mater Chem A 1:13559.  https://doi.org/10.1039/c3ta12639k CrossRefGoogle Scholar
  25. 25.
    Song Q, Wang B, Deng K et al (2013) Graphenylene, a unique two-dimensional carbon network with nondelocalized cyclohexatriene units. J Mater Chem C 1:38–41.  https://doi.org/10.1039/C2TC00006G CrossRefGoogle Scholar
  26. 26.
    Hu W, Wu X, Li Z, Yang J (2013) Helium separation via porous silicene based ultimate membrane. Nanoscale 5:9062.  https://doi.org/10.1039/c3nr02326e CrossRefGoogle Scholar
  27. 27.
    Hu W, Wu X, Li Z, Yang J (2013) Porous silicene as a hydrogen purification membrane. Phys Chem Chem Phys 15:5753.  https://doi.org/10.1039/c3cp00066d CrossRefGoogle Scholar
  28. 28.
    Zhuang J, Xu X, Peleckis G et al (2017) Silicene: a promising anode for lithium-ion batteries. Adv Mater.  https://doi.org/10.1002/adma.201606716 Google Scholar
  29. 29.
    Zhang X, Qiu X, Kong D et al (2017) Silicene flowers: a dual stabilized silicon building block for high-performance lithium battery anodes. ACS Nano 11:7476–7484.  https://doi.org/10.1021/acsnano.7b03942 CrossRefGoogle Scholar
  30. 30.
    Dovesi R, Orlando R, Erba A et al (2014) CRYSTAL14: a program for the ab initio investigation of crystalline solids. Int J Quantum Chem 114:1287–1317.  https://doi.org/10.1002/qua.24658 CrossRefGoogle Scholar
  31. 31.
    Pascale F, Zicovich-Wilson CM, Orlando R*,§ et al (2005) Vibration Frequencies of Mg3Al2Si3O12 Pyrope. An ab initio study with the CRYSTAL code.  https://doi.org/10.1021/jp050316z
  32. 32.
    Dovesi R, Ermondi C, Ferrero E et al (1984) Hartree-Fock study of lithium hydride with the use of a polarizable basis set. Phys Rev B 29:3591–3600.  https://doi.org/10.1103/PhysRevB.29.3591 CrossRefGoogle Scholar
  33. 33.
    Ferrero M, Rérat M, Kirtman B, Dovesi R (2008) Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code. J Chem Phys 129:244110.  https://doi.org/10.1063/1.3043366 CrossRefGoogle Scholar
  34. 34.
    Ferrero M, Rérat M, Orlando R, Dovesi R (2008) The calculation of static polarizabilities of 1-3D periodic compounds. the implementation in the crystal code. J Comput Chem 29:1450–1459.  https://doi.org/10.1002/jcc.20905 CrossRefGoogle Scholar
  35. 35.
    Ferrero M, Rérat M, Orlando R, Dovesi R (2008) Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related computational aspects. J Chem Phys 128:14110.  https://doi.org/10.1063/1.2817596 CrossRefGoogle Scholar
  36. 36.
    Fujimoto H, Nakayama K, Tanaka M, Misawa G (1995) Absolute measurement of lattice spacing d(220) silicon crystal in floating zone. Jpn J Appl Phys 34:5065–5069.  https://doi.org/10.1143/JJAP.34.5065 CrossRefGoogle Scholar
  37. 37.
    Hybertsen MS, Louie SG (1985) First-principles theory of quasiparticles: calculation of band gaps in semiconductors and insulators. Phys Rev Lett 55:1418–1421.  https://doi.org/10.1103/PhysRevLett.55.1418 CrossRefGoogle Scholar
  38. 38.
    Lew Yan Voon LC, Sandberg E, Aga RS, Farajian AA (2010) Hydrogen compounds of group-IV nanosheets. Appl Phys Lett 97:163114.  https://doi.org/10.1063/1.3495786 CrossRefGoogle Scholar
  39. 39.
    Vogt P, De Padova P, Quaresima C et al (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108:155501.  https://doi.org/10.1103/PhysRevLett.108.155501 CrossRefGoogle Scholar
  40. 40.
    Feng B, Ding Z, Meng S et al (2012) Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett 12:3507–3511.  https://doi.org/10.1021/nl301047g CrossRefGoogle Scholar
  41. 41.
    Fleurence A, Friedlein R, Ozaki T et al (2012) Experimental evidence for epitaxial silicene on diboride thin films. Phys Rev Lett 108:245501.  https://doi.org/10.1103/PhysRevLett.108.245501 CrossRefGoogle Scholar
  42. 42.
    He L, Liu F, Hautier G et al (2014) Accuracy of generalized gradient approximation functionals for density-functional perturbation theory calculations. Phys Rev B 89:64305.  https://doi.org/10.1103/PhysRevB.89.064305 CrossRefGoogle Scholar
  43. 43.
    Kuzmin A, Kalinko A, Evarestov R (2011) First-principles LCAO study of phonons in NiWO4. Open Phys.  https://doi.org/10.2478/s11534-010-0091-z Google Scholar
  44. 44.
    Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215.  https://doi.org/10.1063/1.1564060 CrossRefGoogle Scholar
  45. 45.
    Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106.  https://doi.org/10.1063/1.2404663 CrossRefGoogle Scholar
  46. 46.
    Şahin H, Cahangirov S, Topsakal M et al (2009) Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations. Phys Rev B 80:155453.  https://doi.org/10.1103/PhysRevB.80.155453 CrossRefGoogle Scholar
  47. 47.
    Kaloni TP, Cheng YC, Schwingenschlögl U (2013) Hole doped Dirac states in silicene by biaxial tensile strain. J Appl Phys 113:104305.  https://doi.org/10.1063/1.4794812 CrossRefGoogle Scholar
  48. 48.
    Koshida N (2009) Device applications of silicon nanocrystals and nanostructures. Springer, Berlin.  https://doi.org/10.1007/978-0-387-78689-6 CrossRefGoogle Scholar
  49. 49.
    Fusina L, Cané E, Escribano R, Bürger H (1997) The Si–H stretching fundamentals of H328SiD. J Mol Spectrosc 184:385–394.  https://doi.org/10.1006/jmsp.1997.7340 CrossRefGoogle Scholar
  50. 50.
    Tolstoy VP, Chernyshova IV, Skryshevsky VA (2003) Handbook of infrared spectroscopy of Ultrathin films.  https://doi.org/10.1002/047123432x

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • G. S. L. Fabris
    • 1
  • N. L. Marana
    • 1
  • E. Longo
    • 2
  • J. R. Sambrano
    • 1
    Email author
  1. 1.Modeling and Molecular Simulation Group - CDMFSão Paulo State UniversityBauruBrazil
  2. 2.Chemistry Institute - CDMFFederal University of São CarlosSão CarlosBrazil

Personalised recommendations