Ketamine induces immediate and delayed alterations of OCD-like behavior

  • Summer L. Thompson
  • Amanda C. Welch
  • Julia Iourinets
  • Stephanie C. DulawaEmail author
Original Investigation



Obsessive-compulsive disorder (OCD) is a psychiatric disorder characterized by intrusive obsessive thoughts and/or compulsive behaviors. Currently, serotonin reuptake inhibitors (SRIs) provide the only pharmacological monotherapy for OCD, but response rates are insufficient. Ketamine, a noncompetitive NMDA receptor antagonist, was reported to have rapid, sustained therapeutic effects in OCD patients. However, the mechanisms remain unknown.


Here, we aimed to provide a platform for investigating mechanisms underlying anti-OCD effects of ketamine treatment by assessing whether ketamine pretreatment could alleviate 5-HT1B receptor (5-HT1BR)-induced OCD-like behavior in mice.


We assessed whether acute ketamine (0, 3, 10, 30 mg/kg), administered at two pretreatment time points (30 min, 24 h), would modulate 5-HT1BR-induced OCD-like behavior in mice. Behavioral measures were perseverative hyperlocomotion in the open field and deficits in prepulse inhibition (PPI) induced by acute pharmacological 5-HT1BR challenge.


Three milligrams per kilogram of ketamine reduced 5-HT1BR-induced perseverative hyperlocomotion, but not PPI deficits, 24 h postinjection. In contrast, higher doses of ketamine were either ineffective (10 mg/kg) or exacerbated (30 mg/kg) 5-HT1BR-induced perseverative hyperlocomotion 30 min postinjection. At 24 h postinjection, 30 mg/kg ketamine reduced perseverative hyperlocomotion across all groups.


Our results suggest that the 5-HT1BR-induced model of OCD-like behavior is sensitive to a low dose of ketamine, a potential fast-acting anti-OCD treatment, and may provide a tool for studying mechanisms underlying the rapid therapeutic effects of ketamine in OCD patients.


Ketamine OCD Compulsive Perseverative Prepulse inhibition NMDA 5-HT1B RU24969 


Funding and disclosures

This work was supported by an IMHRO Rising Star Depression Research Award in Memory of George Largay, a NARSAD Independent Investigator Award , and R21MH115395 to SD, and training grants: T32 GM07839 and T32 DA07255 to SLT.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

213_2019_5397_MOESM1_ESM.pdf (138 kb)
ESM 1 (PDF 137 kb)


  1. Ahmari SE, Risbrough VB, Geyer MA, Simpson HB (2012) Impaired sensorimotor gating in unmedicated adults with obsessive-compulsive disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 37:1216–1223.PubMedPubMedCentralCrossRefGoogle Scholar
  2. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric PubGoogle Scholar
  3. Autry AE, Adachi M, Nosyreva E et al (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Babyak MA (2004) What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom Med 66:411– 421.PubMedPubMedCentralGoogle Scholar
  5. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bloch MH, Wasylink S, Landeros-Weisenberger A et al (2012) Effects of ketamine in treatment-refractory obsessive-compulsive disorder. Biol Psychiatry 72:964–970.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chan M-H, Chiu P-H, Lin C-Y, Chen H-H (2012) Inhibition of glycogen synthase kinase-3 attenuates psychotomimetic effects of ketamine. Schizophr Res 136:96–103.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chan M-H, Chiu P-H, Sou J-H, Chen H-H (2008) Attenuation of ketamine-evoked behavioral responses by mGluR5 positive modulators in mice. Psychopharmacology 198:141–148.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chaturvedi HK, Dinesh C, Bapna JS (1999) Effect of NMDA receptor antagonists in forced swimming test and its modification by antidepressants. Indian J Pharm 31:104Google Scholar
  10. Choi I-S, Cho J-H, An C-H et al (2012) 5-HT(1B) receptors inhibit glutamate release from primary afferent terminals in rat medullary dorsal horn neurons. Br J Pharmacol 167:356–367.Google Scholar
  11. Chowdhury GMI, Behar KL, Cho W, Thomas MA, Rothman DL, Sanacora G (2012) 1H-[13C]-Nuclear magnetic resonance spectroscopy measures of ketamine’s effect on amino acid neurotransmitter metabolism. Biol Psychiatry 71:1022–1025.PubMedCrossRefPubMedCentralGoogle Scholar
  12. de Brouwer G, Fick A, Harvey BH, Wolmarans DW (2018) A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive-compulsive disorder: mapping the way forward. Cogn Affect Behav Neurosci 19:1–39.CrossRefGoogle Scholar
  13. de Oliveira L, Spiazzi CM, Bortolin T et al (2009) Different sub-anesthetic doses of ketamine increase oxidative stress in the brain of rats. Prog Neuro- Psychopharmacol Biol Psychiatry 33:1003–1008.Google Scholar
  14. Dold M, Aigner M, Lanzenberger R, Kasper S (2015) Antipsychotic augmentation of serotonin reuptake inhibitors in treatment-resistant obsessive-compulsive disorder: an update meta-analysis of double-blind, randomized, placebo-controlled trials. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol CINP.Google Scholar
  15. Douma TN, Millan MJ, Boulay D, Griebel G, Verdouw PM, Westphal KG, Olivier B, Groenink L (2014) CRF1 receptor antagonists do not reverse pharmacological disruption of prepulse inhibition in rodents. Psychopharmacology 231:1289–1303.PubMedCrossRefPubMedCentralGoogle Scholar
  16. du Jardin KG, Liebenberg N, Cajina M, Müller HK, Elfving B, Sanchez C, Wegener G (2017) S-Ketamine mediates its acute and sustained antidepressant-like activity through a 5-HT1B receptor dependent mechanism in a genetic rat model of depression. Front Pharmacol 8:978.Google Scholar
  17. Feder A, Parides MK, Murrough JW, Perez AM, Morgan JE, Saxena S, Kirkwood K, aan het Rot M, Lapidus KA, Wan LB, Iosifescu D, Charney DS (2014) Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psychiatry 71:681–688.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Fineberg NA, Brown A, Reghunandanan S, Pampaloni I (2012) Evidence-based pharmacotherapy of obsessive-compulsive disorder. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol CINP 15:1173–1191.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Fisher RA (1934) IV: Tests of goodness of fit, independence and homogeneity; WITH TABLE OF X2. In: Statistical Methods for Research Workers, 5th edn. Oliver and Boyd, pp 103–105Google Scholar
  20. Fraga DB, Olescowicz G, Moretti M, Siteneski A, Tavares MK, Azevedo D, Colla ARS, Rodrigues ALS (2018) Anxiolytic effects of ascorbic acid and ketamine in mice. J Psychiatr Res 100:16–23.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Franceschelli A, Sens J, Herchick S et al (2015) Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naïve and “depressed” mice exposed to chronic mild stress. Neuroscience 290:49–60.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Gerhard DM, Wohleb ES, Duman RS (2016) Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity. Drug Discov Today 21:454–464.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ghasemi M, Raza M, Dehpour AR (2010) NMDA receptor antagonists augment antidepressant-like effects of lithium in the mouse forced swimming test. J Psychopharmacol Oxf Engl 24:585–594.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Gideons ES, Kavalali ET, Monteggia LM (2014) Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci U S A 111:8649–8654.CrossRefGoogle Scholar
  25. Greist JH, Jefferson JW, Kobak KA, Katzelnick DJ, Serlin RC (1995) Efficacy and tolerability of serotonin transport inhibitors in obsessive-compulsive disorder. A meta-analysis. Arch Gen Psychiatry 52:53–60PubMedCrossRefPubMedCentralGoogle Scholar
  26. Gross-Isseroff R, Cohen R, Sasson Y, Voet H, Zohar J (2004) Serotonergic dissection of obsessive compulsive symptoms: a challenge study with mchlorophenylpiperazine and sumatriptan. Neuropsychobiology 50:200–205.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Guo J-D, O’Flaherty BM, Rainnie DG (2017) Serotonin gating of cortical and thalamic glutamate inputs onto principal neurons of the basolateral amygdala. Neuropharmacology 126:224–232.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hayase T, Yamamoto Y, Yamamoto K (2006) Behavioral effects of ketamine and toxic interactions with psychostimulants. BMC Neurosci 7:25.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Ho EV, Thompson SL, Katzka WR, Sharifi MF, Knowles JA, Dulawa SC (2016) Clinically effective OCD treatment prevents 5-HT1B receptor-induced repetitive 10.1007/s00213-019-05397-8 Ho EV, Thompson SL, Katzka WR, Sharifi MF, Knowles JA, Dulawa SC (2016) Clinically effective OCD treatment prevents 5-HT1B receptor-induced repetitive behavior and striatal activation. Psychopharmacology 233:57–70.Google Scholar
  30. Holubova K, Kleteckova L, Skurlova M, Ricny J, Stuchlik A, Vales K (2016) Rapamycin blocks the antidepressant effect of ketamine in task-dependent manner. Psychopharmacology 233:2077–2097.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Hou Y, Zhang H, Xie G, Cao X, Zhao Y, Liu Y, Mao Z, Yang J, Wu C (2013) Neuronal injury, but not microglia activation, is associated with ketamine-induced experimental schizophrenic model in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 45:107–116.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Imre G, Fokkema DS, Boer JAD, Ter Horst GJ (2006) Dose–response characteristics of ketamine effect on locomotion, cognitive function and central neuronal activity. Brain Res Bull 69:338–345.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Issaria Y, Jakubovski E, Bartley CA et al (2016) Early onset of response with selective serotonin reuptake inhibitors in obsessive-compulsive disorder: a metaanalysis. J Clin Psychiatry 77:e605–e611.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Kieschnick R, McCullough BD (2003) Regression analysis of variates observed on (0, 1): percentages, proportions and fractions. Stat Model Int J 3:193–213. CrossRefGoogle Scholar
  35. Koran LM, Pallanti S, Quercioli L (2001) Sumatriptan, 5-HT(1D) receptors and obsessive-compulsive disorder. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol 11:169–172CrossRefGoogle Scholar
  36. Li N, Liu R-J, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G, Duman RS (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754–761.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Li X, Martinez-Lozano Sinues P, Dallmann R et al (2015) Drug pharmacokinetics determined by real-time analysis of mouse breath. Angew Chem Int Ed 54:7815–7818.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA (2003) Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 117:697–706PubMedCrossRefPubMedCentralGoogle Scholar
  39. Lu CW, Lin TY, Huang SK, Wang SJ (2018) 5-HT1B receptor agonist CGS12066 presynaptically inhibits glutamate release in rat hippocampus. Prog Neuro- Psychopharmacol Biol Psychiatry 86:122–130.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Maeng S, Zarate CA, Du J et al (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole- 4-propionic acid receptors. Biol Psychiatry 63:349–352.Google Scholar
  41. McGowan JC, LaGamma CT, Lim SC, Tsitsiklis M, Neria Y, Brachman RA, Denny CA (2017) Prophylactic ketamine attenuates learned fear. Neuropsychopharmacology 42:1577–1589.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927PubMedPubMedCentralCrossRefGoogle Scholar
  43. Montgomery SA, Manceaux A (1992) Fluvoxamine in the treatment of obsessive compulsive disorder. Int Clin Psychopharmacol:5–10PubMedCrossRefPubMedCentralGoogle Scholar
  44. Oberlander C, Demassey Y, Verdu A, van de Velde D, Bardelay C (1987) Tolerance to the serotonin 5-HT1 agonist RU 24969 and effects on dopaminergic behaviour. Eur J Pharmacol 139:205–214PubMedCrossRefPubMedCentralGoogle Scholar
  45. Ossato A, Bilel S, Gregori A, Talarico A, Trapella C, Gaudio RM, de-Giorgio F, Tagliaro F, Neri M, Fattore L, Marti M (2018) Neurological, sensorimotor and cardiorespiratory alterations induced by methoxetamine, ketamine and phencyclidine in mice. Neuropharmacology 141:167–180.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Paulus MP, Geyer MA (1991a) A temporal and spatial scaling hypothesis for the behavioral effects of psychostimulants. Psychopharmacology 104:6–16PubMedCrossRefPubMedCentralGoogle Scholar
  47. Paulus MP, Geyer MA (1991b) A scaling approach to find order parameters quantifying the effects of dopaminergic agents on unconditioned motor activity in rats. Prog Neuro-Psychopharmacol Biol Psychiatry 15:903–919.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Popik P, Hołuj M, Kos T, Nowak G, Librowski T, Sałat K (2017) Comparison of the psychopharmacological effects of tiletamine and ketamine in rodents. Neurotox Res 32:544–554.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Popik P, Kos T, Sowa-Kućma M, Nowak G (2008) Lack of persistent effects of ketamine in rodent models of depression. Psychopharmacology 198:421–430.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Radford KD, Park TY, Lee BH et al (2017) Dose-response characteristics of intravenous ketamine on dissociative stereotypy, locomotion, sensorimotor gating, and nociception in male Sprague-Dawley rats. Pharmacol Biochem Behav 153:130–140.CrossRefGoogle Scholar
  51. Razoux F, Garcia R, Léna I (2007) Ketamine, at a dose that disrupts motor behavior and latent inhibition, enhances prefrontal cortex synaptic efficacy and glutamate release in the nucleus accumbens. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 32:719–727.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Refsgaard LK, Pickering DS, Andreasen JT (2017) Investigation of antidepressant-like and anxiolytic-like actions and cognitive and motor side effects of four Nmethyl-D-aspartate receptor antagonists in mice. Behav Pharmacol 28:37–47.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Rodriguez CI, Kegeles LS, Levinson A, Feng T, Marcus SM, Vermes D, Flood P, Simpson HB (2013) Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 38:2475–2483. 10.1007/s00213-019-05397-8 obsessive-compulsive disorder: proof-of-concept. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 38:2475–2483.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Rodriguez CI, Wheaton M, Zwerling J et al (2016) Can exposure-based CBT extend the effects of intravenous ketamine in obsessive-compulsive disorder? an open-label trial. J Clin Psychiatry 77:408–409.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ruscio AM, Stein DJ, Chiu WT, Kessler RC (2010) The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry 15:53–63.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Sałat K, Siwek A, Starowicz G et al (2015) Antidepressant-like effects of ketamine, norketamine and dehydronorketamine in forced swim test: Role of activity at NMDA receptor. Neuropharmacology 99:301–307.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Shanahan NA, Holick Pierz KA, Masten VL, Waeber C, Ansorge M, Gingrich JA, Geyer MA, Hen R, Dulawa SC (2009) Chronic reductions in serotonin transporter function prevent 5-HT1B-induced behavioral effects in mice. Biol Psychiatry 65:401–408.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Shanahan NA, Velez LP, Masten VL, Dulawa SC (2011) Essential role for orbitofrontal serotonin 1B receptors in obsessive-compulsive disorder-like behavior and serotonin reuptake inhibitor response in mice. Biol Psychiatry 70:1039–1048.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Smithson M, Verkuilen J (2006) A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol Methods 11:54–71.PubMedCrossRefPubMedCentralGoogle Scholar
  60. Soumier A, Carter RM, Schoenfeld TJ, Cameron HA (2016) New hippocampal neurons mature rapidly in response to ketamine but are not required for its acute antidepressant effects on neophagia in rats. eNeuro 3:.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Stein DJ, Van Heerden B, Wessels CJ et al (1999) Single photon emission computed tomography of the brain with Tc-99 m HMPAO during sumatriptan challenge in obsessive-compulsive disorder: investigating the functional role of the serotonin auto-receptor. Prog Neuro-Psychopharmacol Biol Psychiatry 23:1079–1099CrossRefGoogle Scholar
  62. Stern ER, Taylor SF (2014) Cognitive neuroscience of obsessive-compulsive disorder. Psychiatr Clin North Am 37:337–352.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Thelen C, Flaherty E, Saurine J, Sens J, Mohamed S, Pitychoutis PM (2019) Sex differences in the temporal neuromolecular and synaptogenic effects of the rapidacting antidepressant drug ketamine in the mouse brain. Neuroscience 398:182–192.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Thompson SL, Dulawa SC (2019) Dissecting the roles of β-arrestin2 and GSK-3 signaling in 5-HT1BR-mediated perseverative behavior and prepulse inhibition deficits in mice. PLoS One 14:e0211239.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Thompson SL, Dulawa SC (2017) Pharmacological and behavioral rodent models of OCD. In: Pittenger C (ed) Obsessive-Compulsive Disorder: Phenomenology, Pathophysiology, and Treatment. Oxford University Press, pp 385–400Google Scholar
  66. Tosta CL, Silote GP, Fracalossi MP, Sartim AG, Andreatini R, Joca SRL, Beijamini V (2019) S-ketamine reduces marble burying behaviour: involvement of ventromedial orbitofrontal cortex and AMPA receptors. Neuropharmacology 144:233–243.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Veale D, Miles S, Smallcombe N, Ghezai H, Goldacre B, Hodsoll J (2014) Atypical antipsychotic augmentation in SSRI treatment refractory obsessivecompulsive disorder: a systematic review and meta-analysis. BMC Psychiatry 14:317.Google Scholar
  68. Wu SY, Wang MY, Dun NJ (1991) Serotonin via presynaptic 5-HT1 receptors attenuates synaptic transmission to immature rat motoneurons in vitro. Brain Res 554:111–121.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Yamanaka H, Yokoyama C, Mizuma H, Kurai S, Finnema SJ, Halldin C, Doi H, Onoe H (2014) A possible mechanism of the nucleus accumbens and ventral pallidum 5-HT1B receptors underlying the antidepressant action of ketamine: a PET study with macaques. Transl Psychiatry 4:e342.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481–486.Google Scholar
  71. Zanos P, Nelson ME, Highland JN, et al (2017) A negative allosteric modulator for α5 subunit-containing GABA receptors exerts a rapid and persistent antidepressant-like action without the side effects of the NMDA receptor antagonist ketamine in mice. eNeuro 4:.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Zanos P, Piantadosi SC, Wu H-Q et al (2015) The prodrug 4-chlorokynurenine causes ketamine-like antidepressant effects, but not side effects, by NMDA/GlycineB-Site Inhibition. J Pharmacol Exp Ther 355:76–85.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Zarate CA, Singh JB, Carlson PJ et al (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Summer L. Thompson
    • 1
    • 2
  • Amanda C. Welch
    • 2
  • Julia Iourinets
    • 3
  • Stephanie C. Dulawa
    • 2
    Email author
  1. 1.Committee on NeurobiologyUniversity of ChicagoChicagoUSA
  2. 2.Department of PsychiatryUniversity of California San DiegoLa JollaUSA
  3. 3.University of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations