Advertisement

Toward an animal model of borderline personality disorder

  • M. B. Corniquel
  • H. W. Koenigsberg
  • E. LikhtikEmail author
Review

Abstract

Background

Borderline personality disorder (BPD) is a pervasive psychiatric disorder characterized by emotion dysregulation, impulsivity, impaired self-perceptions, and interpersonal relationships and currently affects 1–3% of the US population as reported by Torgersen et al. (Arch Gen Psychiatry 58:590–596, Torgersen et al. 2001), Lenzenweger et al. (Biol Psychiatry 62:553–564, Lenzenweger et al. 2007), and Tomko et al. (J Personal Disord 28:734–750, Tomko et al. 2014). One major obstacle to our understanding of the neural underpinnings of BPD is a lack of valid animal models that translate the key known features of the disorder to a system that is amenable to study.

Objective

To summarize the etiology, major symptoms, and symptom triggers of BPD and then propose a blueprint for building an animal model of BPD by choosing key components of the disorder that can be implemented in rodents.

Results

We identify the role of early life stress and subsequent mild stress in adulthood as contributing etiological factors and the potential use of altered communication between frontal cortices and the amygdala in extinction and habituation, increased impulsivity, dysregulation of the hypothalamic pituitary axis (HPA), and increased neuroinflammation as biological markers of BPD. Building upon these features of BPD, we propose a two-hit animal model that uses maternal abandonment to alter maturation of the HPA axis and mild secondary adult stress to evoke behavioral symptoms such as increased impulsivity and impaired extinction, habituation, and social interactions.

Conclusion

Through exploration of the etiology, symptom presentation, and altered neurological function, we propose an animal model of BPD. We believe that a number of existing animal paradigms that model other mental health disorders should be combined in a unique way to reflect the etiology, symptom presentation, and altered neurological function that is evident in BPD. These model, when compared with available human data, will inform research and treatment in humans for better understanding of systems from the micro-molecular level to more global physiology underlying BPD.

Keywords

Borderline personality disorder Early life stress Arousal regulation 

Notes

References

  1. Adler G, Buie DH (1979) Aloneness and borderline psychopathology: the possible relevance of child development issues. Int J Psychoanal 60:83–96PubMedGoogle Scholar
  2. Amad A, Ramoz N, Thomas P, Reviews JR (2014) Genetics of borderline personality disorder: systematic review and proposal of an integrative modelGoogle Scholar
  3. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: AuthorGoogle Scholar
  4. Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, Chen B, Hen R (2018) Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature. 559:98–102CrossRefPubMedPubMedCentralGoogle Scholar
  5. Artiga AI, Viana JB, Maldonado CR, Chandler-Laney PC, Oswald KD, Boggiano MM (2007) Body composition and endocrine status of long-term stress-induced binge-eating rats. Physiol Behav 91:424–431CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baczkowski BM, Zutphen LV, Siep N et al (2017) Deficient amygdala–prefrontal intrinsic connectivity after effortful emotion regulation in borderline personality disorder. Eur Arch Psychiatry Clin Neurosci 267:551–565.  https://doi.org/10.1007/s00406-016-0760-z CrossRefPubMedGoogle Scholar
  7. Bailey C, Peterson JR, Schnegelsiepen A, Stuebing SL, Kirkpatrick K (2018) Durability and generalizability of time-based intervention effects on impulsive choice in rats. Behav Process 152:54–62CrossRefGoogle Scholar
  8. Banqueri M, Méndez M, Arias JL (2017) Behavioral effects in adolescence and early adulthood in two length models of maternal separation in male rats. Behav Brain Res 324:77–86.  https://doi.org/10.1016/j.bbr.2017.02.006 CrossRefPubMedGoogle Scholar
  9. Baratta MV, Christianson JP, Gomez DM, Zarza CM, Amat J, Masini CV, Watkins LR, Maier SF (2007) Controllable versus uncontrollable stressors bi-directionally modulate conditioned but not innate fear. Neuroscience. 146:1495–1503CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bassir Nia A, Eveleth M, Gabbay J, Hassan YJ, Zhang B, Perez-Rodriguez MM (2018) Past, present, and future of genetic research in borderline personality disorder. Curr Opin Psychol 21:60–68.  https://doi.org/10.1016/j.copsyc.2017.09.002 CrossRefPubMedGoogle Scholar
  11. Battle CL, Shea TM, Johnson DM, Yen S, Zlotnick C, Zanarini MC et al (2004) Childhood maltreatment associated with adult personality disorders: findings from the Collaborative Longitudinal Personality Disorders Study. J Personal Disord 18:193–211.  https://doi.org/10.1521/pedi.18.2.193.32777 CrossRefGoogle Scholar
  12. Bayer TA, Falkai P, Maier W (1999) Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the two hit hypothesis. J Psychiatr Res 33:543–548.  https://doi.org/10.1016/s0022-3956(99)00039-4 CrossRefPubMedGoogle Scholar
  13. Berenson KR, Downey G, Rafaeli E, Coifman KG, Paquin NL (2011) The rejection-rage contingency in borderline personality disorder. J Abnorm Psychol 120(3):681–690.  https://doi.org/10.1037/a0023335 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Berretta S, Pantazopoulos H, Caldera M, Pantazopoulos P, Paré D (2005) Infralimbic cortex activation increases c-Fos expression in intercalated neurons of the amygdala. Neuroscience. 2005(132):943–953CrossRefGoogle Scholar
  15. Black DW, Blum N, Pfohl B, Hale N (2004) Suicidal behavior in borderline personality disorder: prevalence, risk factors, prediction, and prevention. J Personal Disord 18:226–239.  https://doi.org/10.1521/pedi.18.3.226.35445 CrossRefGoogle Scholar
  16. Bleys D, Luyten P, Soenens B, Claes S (2018) Gene-environment interactions between stress and 5-HTTLPR in depression: a meta-analytic update. J Affect Disord 226:339–345.  https://doi.org/10.1016/j.jad.2017.09.050 CrossRefPubMedGoogle Scholar
  17. Brambilla P, Soloff PH, Sala M, Nicoletti MA, Keshavan S, Soaers JC (2004) Anatomical MRI study of borderline personality disorder patients. Psychiatry Res Neuroimaging 131:125–133.  https://doi.org/10.1016/j.pscychresns.2004.04.003 CrossRefGoogle Scholar
  18. Bukalo O, Pinard CR, Silverstein S, Brehm C, Hartley ND, Net W et al (2015) Prefrontal inputs to the amygdala instruct fear extinction memory formation. Sci Adv 1:e1500251CrossRefPubMedPubMedCentralGoogle Scholar
  19. Calati R, Gressier F, Balestri M, Serretti A (2013) Genetic modulation of borderline personality disorder: systematic review and meta-analysis. J Psychiatr Res 47:1275–1287.  https://doi.org/10.1016/j.jpsychires.2013.06.002 CrossRefPubMedGoogle Scholar
  20. Callaghan B, Sullivan R, Howell B, Tottenham N (2014) The International Society for Developmental Psychobiology Sackler symposium: early adversity and the maturation of emotion circuits—a cross-species analysis. Dev Psychobiol 56:1635–1650.  https://doi.org/10.1002/dev.21260 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cardinal RN, Pennicott DR, Sugathapala CL, Robbins TW, Everitt BJ (2001) Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science. 292(5526):2499–2501.  https://doi.org/10.1126/science.1060818 CrossRefPubMedGoogle Scholar
  22. Carrasco J, Tajima-Pozo K, Díaz-Marsá M, Casado A, Lopez-Ibor JJ, Arrazola J et al (2012) Microstructural white matter damage at orbitofrontal areas in borderline personality disorder. J Affect Disord 139:149–153.  https://doi.org/10.1016/j.jad.2011.12.019 CrossRefPubMedGoogle Scholar
  23. Chattarji S, Tomar A, Suvrathan A, Ghosh S, Rahmann MM (2015) Neighborhood matters: divergent patterns of stress-induced plasticity across the brain. Nat Neurosci 18:1364–1375CrossRefPubMedGoogle Scholar
  24. Chauveau F, Lange MD, Jüngling K, Lesting J, Seidenbecher T, Pape HC (2012) Prevention of stress-impaired fear extinction through neuropeptide S action in the lateral amygdala. Neuropsychopharmacology. 37:1588–1599CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cho JH, Deisseroth K, Bolshakov VY (2013) Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 80:1491–1507CrossRefPubMedGoogle Scholar
  26. Churchwell JC, Morris AM, Heurtelou NM, Kesner RP (2009) Interactions between the prefrontal cortex and amygdala during delay discounting and reversal. Behav Neurosci 123(6):1185–1196.  https://doi.org/10.1037/a0017734 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Collier DA, Stöber G, Li T, Heils A, Catalano M, Bella DD et al (1996) A novel functional polymorphism within the promoter of the serotonin transporter gene: possible role in susceptibility to affective disorders. Mol Psychiatry 1:453–460PubMedGoogle Scholar
  28. Crawford TN, Cohen PT, Chen H, Anglin DM, Ehrensaft M (2009) Early maternal separation and the trajectory of borderline personality disorder symptoms. Dev Psychopathol 21:1013–1030.  https://doi.org/10.1017/s0954579409000546 CrossRefPubMedGoogle Scholar
  29. Crowell SE, Beauchaine TP, Linehan MM (2009) A biosocial developmental model of borderline personality: elaborating and extending Linehan’s theory. Psychol Bull 135:495–510.  https://doi.org/10.1037/a0015616 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Culverhouse RC, Saccone NL, Horton AC, Ma Y, Anstey KJ, Banaschewski T et al (2017) Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression. Mol Psychiatry 23(1):133.  https://doi.org/10.1038/mp.2017.44 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dalle Molle R, Portella AK, Goldani MZ, Kapczinski FP, Leistner-Segal S, Salum GA et al (2012) Associations between parenting behavior and anxiety in a rodent model and a clinical sample: relationship to peripheral BDNF levels. Transl Psychiatry 2:tp2012126.  https://doi.org/10.1038/tp.2012.126 CrossRefGoogle Scholar
  32. Dalley JW, Robbins TW (2017) Fractionating impulsivity: neuropsychiatric implications. Nat Rev Neurosci 18(3):158–171.  https://doi.org/10.1038/nrn.2017.8 CrossRefPubMedGoogle Scholar
  33. Denny BT, Fan J, Liu X, Guerreri S, Mayson S, Rimsky L et al (2016) Brain structural anomalies in borderline and avoidant personality disorder patients and their associations with disorder-specific symptoms. J Affect Disord 200:266–274.  https://doi.org/10.1016/j.jad.2016.04.053 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Denny B, Fan J, Fels S et al (2018) Sensitization of the neural salience network to repeated emotional stimuli following initial habituation in patients with borderline personality disorder. Am J Psychiatry 175:657–664.  https://doi.org/10.1176/appi.ajp.2018.17030367 CrossRefPubMedGoogle Scholar
  35. Díaz-Marsá M, Macdowell KS, Guemes I, Rubio V, Carrasco JL, Leza JC (2012) Activation of the cholinergic anti-inflammatory system in peripheral blood mononuclear cells from patients with borderline personality disorder. J Psychiatr Res 46:1610–1617.  https://doi.org/10.1016/j.jpsychires.2012.09.009 CrossRefPubMedGoogle Scholar
  36. Distel MA, Trull TJ, Derom CA, Thiery EW, Grimmer MA, Martin NG et al (2007) Heritability of borderline personality disorder features is similar across three countries. Psychol Med 38:1219–1229.  https://doi.org/10.1017/s0033291707002024 CrossRefPubMedGoogle Scholar
  37. Donaldson Z, Piel DA, Santos TL, Richardson-Jones J, Leonardo ED, Beck SG et al (2014) Developmental effects of serotonin 1A autoreceptors on anxiety and social behaviors. Neuropsychopharmacology 39:291–302CrossRefPubMedGoogle Scholar
  38. Duan J, Shi J, Fiorentino A, Leites C, Chen X, Moy W et al (2014) A rare functional noncoding variant at the GWAS-implicated MIR137/MIR2682 locus might confer risk to schizophrenia and bipolar disorder. Am J Hum Genet 95:744–753CrossRefPubMedPubMedCentralGoogle Scholar
  39. Endrass T, Schuermann B, Roepke S, Kessler-Scheil S, Kathmann N (2016) Reduced risk avoidance and altered neural correlates of feedback processing in patients with borderline personality disorder. Psychiatry Res 243:14–22.  https://doi.org/10.1016/j.psychres.2016.06.016 CrossRefPubMedGoogle Scholar
  40. Feigenson KA, Kusnecov AW, lverstein S (2014) Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev 38:72–93.  https://doi.org/10.1016/j.neubiorev.2013.11.006 CrossRefPubMedGoogle Scholar
  41. Fields SA, Lange K, Ramos A, Thamotharan S, Rassu F (2014) The relationship between stress and delay discounting: a meta-analytic review. Behav Pharmacol 25(5–6):434–444.  https://doi.org/10.1097/FBP.0000000000000044 CrossRefPubMedGoogle Scholar
  42. Flannery JE, Gabard-Durnam LJ, Shapiro M, Goff B, Caldera C, Louie J et al (2017) Diurnal cortisol after early institutional care-age matters. Dev Cogn Neurosci Jun:160–166Google Scholar
  43. Fonagy P, Bateman A (2006) Mechanisms of change in mentalization-based treatment of BPD. J Clin Psychol 62:411–430.  https://doi.org/10.1002/jclp.20241 CrossRefPubMedGoogle Scholar
  44. Fossati A, Maffei C, Bagnato M, Battaglia M, Donati D, Donini M et al (2000) Patterns of covariation of DSM-IV personality disorders in a mixed psychiatric sample. Compr Psychiatry 41:206–215.  https://doi.org/10.1016/s0010-440x(00)90049-x CrossRefPubMedGoogle Scholar
  45. Gan J, Yi J, Zhong M, Cao X, Jin X, Liu W et al (2016) Abnormal white matter structural connectivity in treatment-naïve young adults with borderline personality disorder. Acta Psychiatr Scand 134:494–503.  https://doi.org/10.1111/acps.12640 CrossRefPubMedGoogle Scholar
  46. Gee DG, Gabard-Durnam LJ, Flannery J, Goff B, Humphreys KL, Telzer EH et al (2013) Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proc Natl Acad Sci U S A 110(39):15638–15643.  https://doi.org/10.1073/pnas.1307893110 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Glaser JP, Os VJ, Thewissen V, Myin-Germeys I (2010) Psychotic reactivity in borderline personality disorder. Acta Psychiatr Scand 121:125–134.  https://doi.org/10.1111/j.1600-0447.2009.01427.x CrossRefPubMedGoogle Scholar
  48. Golden SA, Covington HE, Berton O, Russo SJ (2011) A standardized protocol for repeated social defeat stress in mice. Nat Protoc 6(8):1183–1191.  https://doi.org/10.1038/nprot.2011.361 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Goodwill HL, Manzano-Nieves G, LaChance P, Teramoto S, Lin S, Lopez C et al (2018) Early life stress drives sex-selective impairment in reversal learning by affecting parvalbuim interneurons in orbitofrontal cortex of mice. Cell Rep 25:2299–2307CrossRefPubMedPubMedCentralGoogle Scholar
  50. Gunduz-Cinar O, Brockway E, Lederle L, Wilcox T, Halladay LR, Ding Y et al (2018) Identification of a novel gene regulating amygdala-mediated fear extinction. Mol Psychiatry.  https://doi.org/10.1038/s41380-017-0003-3
  51. Hagan MM, Wauford PK, Chandler PC, Jarrett LA, Rybak RJ, Blackburn K (2002) A new animal model of binge eating: key synergistic role of past caloric restriction and stress. Physiol Behav 77:45–54Google Scholar
  52. Hall MA, Riedford KM (2017) Borderline personality disorder: diagnosis and common comorbidities. J Nurse Pract 13:e455–e456.  https://doi.org/10.1016/j.nurpra.2017.07.012 CrossRefGoogle Scholar
  53. Hall J, Olabi B, Lawrie SM, McIntosh AM (2010) Hippocampal and amygdala volumes in borderline personality disorder: a meta-analysis of magnetic resonance imaging studies. Personal Ment Health 4:172–179.  https://doi.org/10.1002/pmh.128 CrossRefGoogle Scholar
  54. Hayes JP, Hayes SM, Mikedis AM (2012) Quantitative meta-analysis of neural activity in posttraumatic stress disorder. doi:  https://doi.org/10.1186/2045-5380-2-9
  55. Hazlett E, Zhang J, New A, Zelmanova Y, Goldstein KE, Haznedar MM et al (2012) Potentiated amygdala response to repeated emotional pictures in borderline personality disorder. Biol Psychiatry 72:448–456.  https://doi.org/10.1016/j.biopsych.2012.03.027 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Herbort MC, Soch J, Wüstenberg T, Krauel K, Pujara M, Koenigs M et al (2016) A negative relationship between ventral striatal loss anticipation response and impulsivity in borderline personality disorder. Neuroimage Clin 12:724–736.  https://doi.org/10.1016/j.nicl.2016.08.011 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Herpertz SC, Dietrich TM, Wenning B, Krings T, Erberich SG, Willmes K et al (2001) Evidence of abnormal amygdala functioning in borderline personality disorder: a functional MRI study. Biol Psychiatry 50:292–298.  https://doi.org/10.1016/s0006-3223(01)01075-7 CrossRefPubMedGoogle Scholar
  58. Hodes GE, Pfau ML, Purushothaman I, Ahn HF, Golden SA, Christoffel DJ et al (2015) Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J Neurosci 35:16362–16376CrossRefPubMedPubMedCentralGoogle Scholar
  59. Hoertel N, Peyre H, Wall MM, Limosin F, Blanco C (2014) Examining sex differences in DSM-IV borderline personality disorder symptom expression using item response theory (IRT). J Psychiatr Res 59:213–219.  https://doi.org/10.1016/j.jpsychires.2014.08.019 CrossRefPubMedGoogle Scholar
  60. Illich PA, King TA, Grau JW (1995) Impact of shock on pain reactivity: I. Whether hypo- or hyperalgesia is observed depends on how pain reactivity is tested. J Exp Psychol Anim Behav Process 21:331–347CrossRefPubMedGoogle Scholar
  61. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Sanislow C, Wang P (2010) Research Domain Criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 167(7).  https://doi.org/10.1176/appi.ajp.2010.09091379
  62. Ivy AS, Brunson KL, Sandman C, Baram TZ (2008) Dysfunctional nurturing behavior in rat dams with limited access to nesting material: a clinically relevant model for early-life stress. Neuroscience. 154:1132–1142.  https://doi.org/10.1016/j.neuroscience.2008.04.019 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Jang JW (2011) An animal model of eating disorders associated with stressful experience in early life. Hom Behav 59:213–220Google Scholar
  64. Karg K, Burmeister M, Shedden K, Sen S (2011) The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry 68(5):444–454.  https://doi.org/10.1001/archgenpsychiatry.2010.189 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kaufman J, Plotsky PM, Nemeroff CB, Charney DS (2000) Effects of early adverse experiences on brain structure and function: clinical implications. Biol Psychiatry 48:778–790.  https://doi.org/10.1016/s0006-3223(00)00998-7 CrossRefPubMedGoogle Scholar
  66. Kendler KS, Aggen SH, Czajkowski N, Roysamb E, Tambs K, Torgersen S et al (2008) The structure of genetic and environmental risk factors for DSM-IV personality disorders: a multivariate twin study. Arch Gen Psychiatry 65:1438–1446.  https://doi.org/10.1001/archpsyc.65.12.1438 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kernberg O (1985) Borderline conditions and pathological narcissism. Rowman & Littlefield Publishers, IncGoogle Scholar
  68. Koenigsberg HW, Kaplan RD, Gilmore MM, Cooper AM (1985) The relationship between syndrome and personality disorder in DSM-III: experience with 2,462 patients. Am J Psychiatry 142:207–212.  https://doi.org/10.1176/ajp.142.2.207 CrossRefPubMedGoogle Scholar
  69. Koenigsberg HW, Siever L, Lee H et al (2009) Neural correlates of emotion processing in borderline personality disorder. Psychiatry Res Neuroimaging 172:192–199.  https://doi.org/10.1016/j.pscychresns.2008.07.010 CrossRefGoogle Scholar
  70. Koenigsberg H, Denny B, Fan J et al (2014) The neural correlates of anomalous habituation to negative emotional pictures in borderline and avoidant personality disorder patients. Am J Psychiatry 171:82–90.  https://doi.org/10.1176/appi.ajp.2013.13070852 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Krause-Utz A, Keibel-Mauchnik J, Ebner-Priemer U, Bohus M, Schmahl C (2016) Classical conditioning in borderline personality disorder: an fMRI study. Eur Arch Psychiatry Clin Neurosci 266:291–305.  https://doi.org/10.1007/s00406-015-0593-1 CrossRefPubMedGoogle Scholar
  72. Kuhlmann A, Bertsch K, Schmidinger I, Thomann PA, Herpertz SC (2013) Morphometric differences in central stress-regulating structures between women with and without borderline personality disorder. J Psychiatry Neurosci 38(2):129–137.  https://doi.org/10.1503/jpn.120039 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Landgraf D, Long J, Der-Avakian A, Streets M, Welsh DK (2015) Dissociation of learned helplessness and fear conditioning in mice: a mouse model of depression. PLoS One 10(4):e0125892.  https://doi.org/10.1371/journal.pone.0125892 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lenzenweger MF, Lane MC, Loranger AW, Kessler RC (2007) DSM-IV personality disorders in the National Comorbidity Survey Replication. Biol Psychiatry 62:553–564.  https://doi.org/10.1016/j.biopsych.2006.09.019 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Lieb K, Völlm B, Rücker G, Timmer A, Stoffers JM (2010) Pharmacotherapy for borderline personality disorder: Cochrane systematic review of randomised trials. Br J Psychiatry 196:4–12.  https://doi.org/10.1192/bjp.bp.108.062984 CrossRefPubMedGoogle Scholar
  76. Likhtik E, Paz R (2015) Amygdala–prefrontal interactions in (mal) adaptive learning. Trends Neurosci 38:158–166.  https://doi.org/10.1016/j.tins.2014.12.007 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Likhtik E, Stujenske JM, Topiwala MA, Harris AZ, Gordon JA (2014) Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat Neurosci 17(1):106–113.  https://doi.org/10.1038/nn.3582 CrossRefPubMedGoogle Scholar
  78. Linehan M (1993) Cognitive behavioral treatment for borderline personality disorder. Gilford, New YorkGoogle Scholar
  79. Lischke A, Domin M, Freyberger HJ, Grabe HJ, Mentel R, Bernheim D et al (2015) Structural alterations in white-matter tracts connecting (para-)limbic and prefrontal brain regions in borderline personality disorder. Psychol Med 45:3171–3180.  https://doi.org/10.1017/s0033291715001142 CrossRefPubMedGoogle Scholar
  80. Long VA, Fanselow MS (2012) Stress-enhanced fear learning in rats is resistant to the effects of immediate massed extinction. Stress. 15(6):627–636.  https://doi.org/10.3109/10253890.2011.650251 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Lubke GH, Laurin C, Amin N, Hottenga J, Willemsen G, Grootheest G et al (2014) Genome-wide analyses of borderline personality features. Mol Psychiatry 19:923CrossRefPubMedGoogle Scholar
  82. Machado T, Molle R, Laureano D, Portella A, Werlang I, Benetti C et al (2013) Early life stress is associated with anxiety, increased stress responsivity and preference for “comfort foods” in adult female rats. Stress 16:549–556.  https://doi.org/10.3109/10253890.2013.816841 CrossRefPubMedGoogle Scholar
  83. Maier SF (2001) Exposure to the stressor environment prevents the temporal dissipation of behavioral depression/learned helplessness. Biol Psychiatry 49(9):763–773CrossRefPubMedGoogle Scholar
  84. Maren S, Holmes A (2016) Stress and fear extinction. Neuropsychopharmacology 41:58–79.  https://doi.org/10.1038/npp.2015.180 CrossRefPubMedGoogle Scholar
  85. Marin MF, Camprodon JA, Dougherty DD, Milad MR (2014) Device-based brain stimulation to augment fear extinction: implications for PTSD treatment and beyond. Depress Anxiety 2014 Apr;31(4):269–278Google Scholar
  86. Marin MF, Song H, VanElzakker MB, Staples-Bradley LK, Linnman C, Pace-Schott EF et al (2016) Association of resting metabolism in the fear neural network with extinction recall activations and clinical measures in trauma-exposed individuals. Am J Psychiatry 173:930–938.  https://doi.org/10.1176/appi.ajp.2015.14111460 CrossRefPubMedGoogle Scholar
  87. Maynard T, Sikich L, Lieberman J, LaMantia A (2001) Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr Bull 27:457–476CrossRefPubMedGoogle Scholar
  88. Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S et al (2017) Social stress induces neurovascular pathology promoting depression. Nat Neurosci 20:1752–1760CrossRefPubMedPubMedCentralGoogle Scholar
  89. Middeldorp CM, Geus EJC, Beem LA, Lakenberg N, Hottenga JJ, Slagboom EP et al (2007) Family based association analyses between the serotonin transporter gene polymorphism (5-HTTLPR) and neuroticism, anxiety and depression. Behav Genet 37:294–301CrossRefPubMedGoogle Scholar
  90. Minzenberg MJ, Fan J, New AS, Tang CY, Siever LJ (2008) Frontolimbic structural changes in borderline personality disorder. J Psychiatr Res 42(9):727–733.  https://doi.org/10.1016/j.jpsychires.2007.07.015 CrossRefPubMedGoogle Scholar
  91. Miskewicz K, Fleeson W, Arnold E, Law M, Mneimne M, Furr MR (2015) A contingency-oriented approach to understanding borderline personality disorder: situational triggers and symptoms. J Personal Disord 29:486–502.  https://doi.org/10.1521/pedi.2015.29.4.486 CrossRefGoogle Scholar
  92. Moore NLT, Gauchan S, Genovese RF (2012) Differential severity of anxiogenic effects resulting from a brief swim or underwater trauma in adolescent male rats. Pharmacol Biochem Behav 102:264–268.  https://doi.org/10.1016/j.pbb.2012.05.002 CrossRefPubMedGoogle Scholar
  93. Moriceau S, Sullivan RM (2006) Maternal presence serves as a switch between learning fear and attraction in infancy. Nat Neurosci 9:1004–1006.  https://doi.org/10.1038/nn1733 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Moriceau S, Roth TL, Okotoghaide T, Sullivan RM (2004) Corticosterone controls the developmental emergence of fear and amygdala function to predator odors in infant rat pups. Int J Dev Neurosci 22:415–422.  https://doi.org/10.1016/j.ijdevneu.2004.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Munafò MR, Freimer NB, Ng W, Ophoff R, Veijola J, Miettunen J et al (2009) 5-HTTLPR genotype and anxiety-related personality traits: a meta-analysis and new data. Am J Med Genet B Neuropsychiatr Genet 150B:271–281CrossRefPubMedPubMedCentralGoogle Scholar
  96. Myin-Germeys I, Delespaul P, Os JV (2005) Behavioural sensitization to daily life stress in psychosis. Psychol Med 35:733–741.  https://doi.org/10.1017/s0033291704004179 CrossRefPubMedGoogle Scholar
  97. New AS, Carpenter DM, Perez-Rodriguez MM, Ripoll LH, Avedon J, Patil U et al (2013) Developmental differences in diffusion tensor imaging parameters in borderline personality disorder. J Psychiatr Res 47:1101–1109.  https://doi.org/10.1016/j.jpsychires.2013.03.021 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Ni X, Chan K, Bulgin N, Sicard T, Bismil R, McMain S et al (2006) Association between serotonin transporter gene and borderline personality disorder. J Psychiatr Res 40:448–453.  https://doi.org/10.1016/j.jpsychires.2006.03.010 CrossRefPubMedGoogle Scholar
  99. Niedtfeld I, Schulze L, Kirsch P, Herpertz SC, Bohus M, Schmahl C (2010) Affect regulation and pain in borderline personality disorder: a possible link to the understanding of self-injury. Biol Psychiatry 68:383–391.  https://doi.org/10.1016/j.biopsych.2010.04.015 CrossRefPubMedGoogle Scholar
  100. Nollet M, Guisquet AM, Belzung C (2013) Models of depression: unpredictable chronic mild stress in mice. Curr Protoc Pharmacol. Chapter 5. Unit 5.65.  https://doi.org/10.1002/0471141755.ph0565s61
  101. Opendak M, Gould E, Sullivan R (2017) Early life adversity during the infant sensitive period for attachment: programming of behavioral neurobiology of threat processing and social behavior. Dev Cogn Neurosci 25:145–159CrossRefPubMedPubMedCentralGoogle Scholar
  102. Pascual J, Soler J, Barrachina J, Campins JM, Alvarez E, Perez V et al (2008) Failure to detect an association between the serotonin transporter gene and borderline personality disorder. J Psychiatr Res 42:87–88.  https://doi.org/10.1016/j.jpsychires.2006.10.005 CrossRefPubMedGoogle Scholar
  103. Peña CJ, Kronman HG, Walker DM, Cates HM, Bagot RC, Purushothaman I et al (2017) Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science. 356:1185–1188CrossRefPubMedPubMedCentralGoogle Scholar
  104. Perova Z, Delevich K, Li B (2015) Depression of excitatory synapses onto parvalbumin interneurons in the medial prefrontal cortex in susceptibility to stress. J Neurosci 35:3201–3206CrossRefPubMedPubMedCentralGoogle Scholar
  105. Power RA, Tansey KE, Buttenschøn HN, Cohen-Woods S, Bigdeli T, Hall LS et al (2017) Genome-wide association for major depression through age at onset stratification: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Biol Psychiatry 81(4):325–335.  https://doi.org/10.1016/j.biopsych.2016.05.010 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Quirk GJ, Likhtik E, Pelletier JG, Paré D (2003) Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 23:8800–8807CrossRefPubMedGoogle Scholar
  107. Rabinak CA, Mori S, Lyons M, Milad MR, Phan KL (2017) Acquisition of CS-US contingencies during Pavlovian fear conditioning and extinction in social anxiety disorder and posttraumatic stress disorder. J Affect Disord 207:76–85.  https://doi.org/10.1016/j.jad.2016.09.018 CrossRefPubMedGoogle Scholar
  108. Rahman MM, Shukla A, Chattarji S (2018) Extinction recall of fear memories formed before stress is not affected despite higher theta activity in the amygdala. Elife. 7:e35450.  https://doi.org/10.7554/eLife.35450 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Rajbhandari AK, Gonzalez ST, Fanselow MS (2018) Stress-enhanced fear learning, a robust rodent model of post-traumatic stress disorder. J Vis Exp.  https://doi.org/10.3791/58306
  110. Rau V, Fanselow MS (2009) Exposure to a stressor produces a long lasting enhancement of fear learning in rats. Stress. 12(2):125–133.  https://doi.org/10.1080/10253890802137320 CrossRefPubMedGoogle Scholar
  111. Rau V, DeCola JP, Fanselow MS (2005) Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder. Neurosci Biobehav Rev 29(8):1207–1223.  https://doi.org/10.1016/j.neubiorev.2005.04.010 CrossRefPubMedGoogle Scholar
  112. Reitz S, Kluetsch R, Niedtfeld I, Knorz T, Lis S, Paret C et al (2015) Incision and stress regulation in borderline personality disorder: neurobiological mechanisms of self-injurious behaviour. Br J Psychiatry 207:165–172.  https://doi.org/10.1192/bjp.bp.114.153379 CrossRefPubMedGoogle Scholar
  113. Rice CJ, Sandman CA, Lenjavi MR, Baram TZ (2008) A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology. 149:4892–4900.  https://doi.org/10.1210/en.2008-0633 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Rinne T, Kloet ER, Wouters L, Goekoop JG, DeRijk RH, Brink WND (2002) Hyperresponsiveness of hypothalamic-pituitary-adrenal axis to combined dexamethasone/corticotropin-releasing hormone challenge in female borderline personality disorder subjects with a history of sustained childhood abuse. Biol Psychiatry 52:1102–1112.  https://doi.org/10.1016/s0006-3223(02)01395-1 CrossRefPubMedGoogle Scholar
  115. Ripke A, O’Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S et al (2013) Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45:1150–1159.  https://doi.org/10.1038/ng.2742 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Risch N, Herrell R, Lehner T, Liang K, Eaves L, Hoh J et al (2009) Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA 301(23):2462–2471.  https://doi.org/10.1001/jama.2009.878 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Rosenkranz JA, Grace AA (2001) Dopamine attenuates prefrontal cortical suppression of sensory inputs to the basolateral amygdala of rats. J Neurosci 21:4090–4103CrossRefPubMedGoogle Scholar
  118. Roth T, Lubin F, Funk A, Sweatt D (2009) Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol Psychiatry 65:760–769.  https://doi.org/10.1016/j.biopsych.2008.11.028 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Rudge S, Feigenbaum J, Fonagy P (2017) Mechanisms of change in dialectical behaviour therapy and cognitive behaviour therapy for borderline personality disorder: a critical review of the literature. J Ment Health:1–11.  https://doi.org/10.1080/09638237.2017.1322185
  120. Sampath D, Sabitha KR, Hegde P, Jayakrishnan HR, Kutty BM, Chattarju S et al (2014) A study on fear memory retrieval and REM sleep in maternal separation and isolation stressed rats. Behav Brain Res 273:144–154.  https://doi.org/10.1016/j.bbr.2014.07.034 CrossRefPubMedGoogle Scholar
  121. Santiago A, Aoki C, Sullivan RM (2017) From attachment to independence: stress hormone control of ecologically relevant emergence of infants’ responses to threat. Curr Opin Behav Sci 14:78–85.  https://doi.org/10.1016/j.cobeha.2016.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Schinka JA, Busch RM, Robichaux-Keene N (2004) A meta-analysis of the association between the serotonin transporter gene polymorphism (5-HTTLPR) and trait anxiety. Mol Psychiatry 9:197–202.  https://doi.org/10.1038/sj.mp.4001405 CrossRefPubMedGoogle Scholar
  123. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43:969–976.  https://doi.org/10.1038/ng.940 CrossRefGoogle Scholar
  124. Schulze L, Shcmahi C, Niedtfeld I (2016) Neural correlates of disturbed emotion processing in borderline personality disorder: a multi-modal meta analysis. Biol Psychiatry 79:97–106.  https://doi.org/10.1016/j.biopsych.2015.03.027 CrossRefPubMedGoogle Scholar
  125. Sen S, Burmeister M, Ghosh D (2004) Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits. Am J Med Genet B Neuropsychiatr Genet 127B:85–89.  https://doi.org/10.1002/ajmg.b.20158 CrossRefPubMedGoogle Scholar
  126. Sher L, Rutter SB, New AS, Siever LJ, Hazlett EA (2019) Gender differences and similarities in aggression, suicidal behaviour, and psychiatric comorbidity in borderline personality disorder. Acta Psychiatr Scand 139(2):145–153.  https://doi.org/10.1111/acps.12981 CrossRefPubMedGoogle Scholar
  127. Skodol AE, Gunderson JG, McGlashan TH, Dyck IR, Stout RL, Bender DS et al (2002) Functional impairment in patients with schizotypal, borderline, avoidant, or obsessive-compulsive personality disorder. Am J Psychiatr 159:276–283.  https://doi.org/10.1176/appi.ajp.159.2.276 CrossRefPubMedGoogle Scholar
  128. Smolinsky A, Bergner C, LaPorte J, Kalueff A (2009) Analysis of grooming behavior and its utility in studying animal stress, anxiety, and depression. In: Mood and anxiety related phenotypes in mice. Humana Press, pp 21–36Google Scholar
  129. Soloff PH, Chiappetta L (2012) Prospective predictors of suicidal behavior in borderline personality disorder at 6-year follow-up. Am J Psychiatry 169:484–490.  https://doi.org/10.1176/appi.ajp.2011.11091378 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Soloff PH, White R, Omari A, Ramaseshan K, Diwadkar VA et al (2015) Affective context interferes with brain responses during cognitive processing in borderline personality disorder: fMRI evidence. Psychiatry Res Neuroimaging 233:23–35.  https://doi.org/10.1016/j.pscychresns.2015.04.006 CrossRefGoogle Scholar
  131. Soloff PH, Abraham K, Ramaseshan K, Burgess A, Diwadkar VA (2017) Hyper-modulation of brain networks by the amygdala among women with borderline personality disorder: network signatures of affective interference during cognitive processing. J Psychiatr Res 88:56–63.  https://doi.org/10.1016/j.jpsychires.2016.12.016 CrossRefPubMedGoogle Scholar
  132. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russel J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17:1429–1436CrossRefPubMedGoogle Scholar
  133. Sousa VC, Vital J, Costenla A, Batalha VL, Sebastiao AM, Ribeiro JA, Lopes LV (2014) Maternal separation impairs long term-potentiation in CA1-CA3 synapses and hippocampal-dependent memory in old rats. Neurobiol Aging 35:1680–1685.  https://doi.org/10.1016/j.neurobiolaging.2014.01.024 CrossRefPubMedGoogle Scholar
  134. St Onge JR, Floresco SB (2010) Prefrontal cortical contribution to risk-based decision making. Cereb Cortex 20(8):1816–1828.  https://doi.org/10.1093/cercor/bhp250 CrossRefPubMedGoogle Scholar
  135. St Onge JR, Ahn S, Phillips AG, Floresco SB (2012) Dynamic fluctuations in dopamine efflux in the prefrontal cortex and nucleus accumbens during risk-based decision making. J Neurosci 32(47):16880–16891.  https://doi.org/10.1523/JNEUROSCI.3807-12.2012 CrossRefPubMedGoogle Scholar
  136. Stanton ME, Gutierrez YR, Levine S (1988) Maternal deprivation potentiates pituitary-adrenal stress responses in infant rats. Behav Neurosci 102:692.  https://doi.org/10.1037/0735-7044.102.5.692 CrossRefPubMedGoogle Scholar
  137. Stevens JS, Jovanovic T, Fani N, Ely TD, Glover EM, Bradley B, Ressler KJ (2013) Disrupted amygdala-prefrontal functional connectivity in civilian women with posttraumatic stress disorder. J Psychiatr Res.  https://doi.org/10.1016/j.jpsychires.2013.05.031
  138. Stiglmayr CE, Ebner-Priemer UW, Bretz J, Behm R, Mohse M, Lammers CH et al (2008) Dissociative symptoms are positively related to stress in borderline personality disorder. Acta Psychiatr Scand 117:139–147.  https://doi.org/10.1111/j.1600-0447.2007.01126.x CrossRefPubMedGoogle Scholar
  139. Stopper CM, Green EB, Floresco SB (2014) Selective involvement by the medial orbitofrontal cortex in biasing risky, but not impulsive, choice. Cereb Cortex 24(1):154–162.  https://doi.org/10.1093/cercor/bhs297 CrossRefPubMedGoogle Scholar
  140. Sun SW, Liang HF, Trinkaus K, Cross AH, Armstrong RC, Song SK (2006) Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magn Reson Med 55:302–308.  https://doi.org/10.1002/mrm.20774 CrossRefPubMedGoogle Scholar
  141. Tang AC, Reeb-Sutherland BC, Romeo RD, Mcewen BS (2014) On the causes of early life experience effects: evaluating the role of mom. Front Neuroendocrinol 35:245–251.  https://doi.org/10.1016/j.yfrne.2013.11.002 CrossRefPubMedGoogle Scholar
  142. Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP, Kim DM (2003) The neurobiological consequences of early stress and childhood maltreatment. Neurosci Biobehav Rev 27:33–44.  https://doi.org/10.1016/s0149-7634(03)00007-1 CrossRefPubMedGoogle Scholar
  143. Tomko RL, Trull TJ, Wood PK, Sher KJ (2014) Characteristics of borderline personality disorder in a community sample: comorbidity, treatment utilization, and general functioning. J Personal Disord 28:734–750.  https://doi.org/10.1521/pedi_2012_26_093 CrossRefGoogle Scholar
  144. Torgersen S, Kringlen E, Cramer V (2001) The prevalence of personality disorders in a community sample. Arch Gen Psychiatry 58:590–596.  https://doi.org/10.1001/archpsyc.58.6.590 CrossRefPubMedGoogle Scholar
  145. Wagner S, Baskaya Ö, Lieb K, Dahmen N, Tadic A (2009) The 5-HTTLPR polymorphism modulates the association of serious life events (SLE) and impulsivity in patients with borderline personality disorder. J Psychiatr Res 43:1067–1072.  https://doi.org/10.1016/j.jpsychires.2009.03.004 CrossRefPubMedGoogle Scholar
  146. Walker CD, Bath KG, Joels M, Korosi A, Larauche M, Lucassen PJ et al (2017) Chronic early life stress induced by limited bedding and nesting (LBN) material in rodents: critical considerations of methodology, outcomes and translational potential. Stress 20(5):421–448.  https://doi.org/10.1080/10253890.2017.1343296 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Wang Y, Cao L, Lee CY, Matsuo T, Wu K, Asher G et al (2018) Large-scale forward genetics screening identifies Trpa1 as a chemosensor for predator odor-evoked innate fear behaviors. Nat Commun 9(1):2041.  https://doi.org/10.1038/s41467-018-04324-3 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Whalley HC, Nickson T, Pope M, Nicol K, Romaniuk L, Bastin ME et al (2015) White matter integrity and its association with affective and interpersonal symptoms in borderline personality disorder. NeuroImage: Clinical 7:476–481.  https://doi.org/10.1016/j.nicl.2015.01.016 CrossRefGoogle Scholar
  149. Willner P, Belzung C (2015) Treatment-resistant depression: are animal models of depression fit for purpose? Psychopharmacology. 232:3473–3495.  https://doi.org/10.1007/s00213-015-4034-7 CrossRefPubMedGoogle Scholar
  150. Witt SH, Streit F, Jungkunz M, Frank J, Awasthi S, Reinbold CS, et al (2017) Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia. doi:  https://doi.org/10.1038/tp.2017.115
  151. Yan HC, Cao X, Das M, Zhu XH, Gao TM (2010) Behavioral animal models of depression. Neurosci Bull 26:327–337.  https://doi.org/10.1007/s12264-010-0323-7 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Yeomans F, Levy K (2002) An object relations perspective on borderline personality. Acta Neuropsychiatr 14:76–80.  https://doi.org/10.1034/j.1601-5215.2002.140205.x CrossRefPubMedGoogle Scholar
  153. Zanarini MC (2000) Childhood experiences associated with the development of borderline personality disorder. Psychiatr Clin N Am 23:89–101.  https://doi.org/10.1016/s0193-953x(05)70145-3 CrossRefGoogle Scholar
  154. Zanarini MC, Frankenburg FR, Khera GS, Bleichmar J (2001) Treatment histories of borderline inpatients. Compr Psychiatry 42:144–150.  https://doi.org/10.1053/comp.2001.19749 CrossRefPubMedGoogle Scholar
  155. Zanarini MC, Yong L, Frankenberg FR, Hennen J, Reich DB, Marion MF et al (2002) Severity of reported childhood sexual abuse and its relationship to severity of borderline psychopathology and psychosocial impairment among borderline inpatients. J Nerv Ment Dis 190:381.  https://doi.org/10.1097/00005053-200206000-00006 CrossRefPubMedGoogle Scholar
  156. Zanarini MC, Williams AA, Lewis RE, Reich RB, Vera SC, Marino MF et al (2006) Reported pathological childhood experiences associated with the development of borderline personality disorder. Am J Psychiatr 154:1101–1106.  https://doi.org/10.1176/ajp.154.8.1101 CrossRefGoogle Scholar
  157. Zanarini MC, Frankenburg FR, Reich BD, Conkey LC, Fizmaurice GM (2015) Treatment rates for patients with borderline personality disorder and other personality disorders: a 16-year study. Psychiatr Serv 66:15–20.  https://doi.org/10.1176/appi.ps.201400055 CrossRefPubMedGoogle Scholar
  158. Zeeb FD, Baarendse PJ, Vanderschuren LJ, Winstanley CA (2015) Inactivation of the prelimbic or infralimbic cortex impairs decision-making in the rat gambling task. Psychopharmacology. 232(24):4481–4491.  https://doi.org/10.1007/s00213-015-4075-y CrossRefPubMedGoogle Scholar
  159. Zimmerman M, Mattia JI (1999) Axis I diagnostic comorbidity and borderline personality disorder. Compr Psychiatry 40(4):245–252.  https://doi.org/10.1016/s0010-440x(99)90123-2 CrossRefPubMedGoogle Scholar
  160. Zimmerman M, Rothschild L, Chelminski I (2005) The prevalence of DSM-IV personality disorders in psychiatric outpatients. Am J Psychiatr 162:1911–1918.  https://doi.org/10.1176/appi.ajp.162.10.1911 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. B. Corniquel
    • 1
  • H. W. Koenigsberg
    • 1
    • 2
  • E. Likhtik
    • 3
    • 4
    Email author
  1. 1.Icahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.James J Peters VA Medical CenterNew YorkUSA
  3. 3.Hunter College, City University of New YorkNew YorkUSA
  4. 4.The Graduate Center, City University of New YorkNew YorkUSA

Personalised recommendations