Advertisement

Do your gut microbes affect your brain dopamine?

  • Camila González-Arancibia
  • Jocelyn Urrutia-Piñones
  • Javiera Illanes-González
  • Jonathan Martinez-Pinto
  • Ramón Sotomayor-Zárate
  • Marcela Julio-Pieper
  • Javier A. BravoEmail author
Review

Abstract

Increasing evidence shows changes in gut microbiota composition in association with psychiatric disorders, including anxiety and depression. Moreover, it has been reported that perturbations in gut microbe diversity and richness influence serotonergic, GABAergic, noradrenergic, and dopaminergic neurotransmission. Among these, dopamine is regarded as a main regulator of cognitive functions such as decision making, attention, memory, motivation, and reward. In this work, we will highlight findings that link alterations in intestinal microbiota and dopaminergic neurotransmission, with a particular emphasis on the mesocorticolimbic circuit, which is involved in reward to natural reinforcers, as well as abuse substances. For this, we reviewed evidence from studies carried out on germ-free animals, or in rodents subjected to intestinal dysbiosis using antibiotics, and also through the use of probiotics. All this evidence strongly supports that the microbiota-gut-brain axis is key to the physiopathology of several neuropsychiatric disorders involving those where dopaminergic neurotransmission is compromised. In addition, the gut microbiota appears as a key player when it comes to proposing novel strategies to the treatment of these psychiatric conditions.

Keywords

Gut microbiota Dopamine Dopamine receptor 1 Mesocorticolimbic circuit 

Notes

Funding

This work was supported by FONDECYT Grants #1140776 and #1190729 to J.A.B, #1160398 to R.S-Z and #1181019 to M.J-P. IDRC. C.G-A, J.U-P, and J.I-P are recipients of graduate fellowship “Beca de Doctorado Nacional” from CONICYT.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abela AR, Duan Y, Chudasama Y (2015) Hippocampal interplay with the nucleus accumbens is critical for decisions about time. Eur J Neurosci 42:2224–2233.  https://doi.org/10.1111/ejn.13009 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adlerberth I et al (1991) Intestinal colonization with Enterobacteriaceae in Pakistani and Swedish hospital-delivered infants. Acta Paediatr Scand 80:602–610CrossRefPubMedGoogle Scholar
  3. Anand KS, Dhikav V (2012) Hippocampus in health and disease: An overview. Ann Indian Acad Neurol 15:239–246.  https://doi.org/10.4103/0972-2327.104323 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arentsen T et al (2017) The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Mol Psychiatry 22:257–266.  https://doi.org/10.1038/mp.2016.182 CrossRefPubMedGoogle Scholar
  5. Asano Y et al (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303:G1288–G1295.  https://doi.org/10.1152/ajpgi.00341.2012 CrossRefPubMedGoogle Scholar
  6. Baik JH (2013) Dopamine signaling in reward-related behaviors. Front Neural Circuits 7:152.  https://doi.org/10.3389/fncir.2013.00152 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baldassarre ME, di Mauro A, Mastromarino P, Fanelli M, Martinelli D, Urbano F, Capobianco D, Laforgia N (2016) Administration of a Multi-Strain Probiotic Product to Women in the Perinatal Period Differentially Affects the Breast Milk Cytokine Profile and May Have Beneficial Effects on Neonatal Gastrointestinal Functional Symptoms. A Randomized Clinical Trial. Nutrients.  https://doi.org/10.3390/nu8110677
  8. Barrera-Bugueno C, Realini O, Escobar-Luna J, Sotomayor-Zarate R, Gotteland M, Julio-Pieper M, Bravo JA (2017) Anxiogenic effects of a Lactobacillus, inulin and the synbiotic on healthy juvenile rats. Neuroscience 359:18–29.  https://doi.org/10.1016/j.neuroscience.2017.06.064 CrossRefPubMedGoogle Scholar
  9. Barrett E, Ross RP, O'Toole PW, Fitzgerald GF, Stanton C (2012) Gamma-aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113:411–417.  https://doi.org/10.1111/j.1365-2672.2012.05344.x CrossRefPubMedGoogle Scholar
  10. Bassareo V, Di Chiara G (1997) Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci 17:851–861CrossRefPubMedGoogle Scholar
  11. Beach TG et al (2010) Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 119:689–702.  https://doi.org/10.1007/s00401-010-0664-3 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bercik P et al (2011) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141:599–609, 609 e591-593.  https://doi.org/10.1053/j.gastro.2011.04.052 CrossRefPubMedGoogle Scholar
  13. Bonaz B, Bazin T, Pellissier S (2018) The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front Neurosci 12:49.  https://doi.org/10.3389/fnins.2018.00049 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Borre YE, O'Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF (2014) Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 20:509–518.  https://doi.org/10.1016/j.molmed.2014.05.002 CrossRefPubMedGoogle Scholar
  15. Braak H, de Vos RAI, Bohl J, Del Tredici K (2006) Gastric α-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology. Neurosci Lett 396:67–72.  https://doi.org/10.1016/j.neulet.2005.11.012 CrossRefPubMedGoogle Scholar
  16. Bravo JA et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108:16050–16055.  https://doi.org/10.1073/pnas.1102999108 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bravo JA, Julio-Pieper M, Forsythe P, Kunze W, Dinan TG, Bienenstock J, Cryan JF (2012) Communication between gastrointestinal bacteria and the nervous system. Curr Opin Pharmacol 12:667–672.  https://doi.org/10.1016/j.coph.2012.09.010 CrossRefPubMedGoogle Scholar
  18. Bull-Otterson L, Feng W, Kirpich I, Wang Y, Qin X, Liu Y, Gobejishvili L, Joshi-Barve S, Ayvaz T, Petrosino J, Kong M, Barker D, McClain C, Barve S (2013) Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PloS One 8:e53028.  https://doi.org/10.1371/journal.pone.0053028 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Charvin D, Medori R, Hauser RA, Rascol O (2018) Therapeutic strategies for Parkinson disease: beyond dopaminergic drugs. Nat Rev Drug Discov.  https://doi.org/10.1038/nrd.2018.136
  20. Cho I et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621–626.  https://doi.org/10.1038/nature11400 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Clarke G et al (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673.  https://doi.org/10.1038/mp.2012.77 CrossRefGoogle Scholar
  22. Clarke G, O'Mahony SM, Dinan TG, Cryan JF (2014) Priming for health: gut microbiota acquired in early life regulates physiology, brain and behaviour. Acta Paediatr 103:812–819.  https://doi.org/10.1111/apa.12674 CrossRefPubMedGoogle Scholar
  23. Coccurello R, Maccarrone M (2018) Hedonic eating and the "delicious circle": from lipid-derived mediators to brain dopamine and Back. Front Neurosci 12:271.  https://doi.org/10.3389/fnins.2018.00271 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Coton E, Rollan G, Bertrand A, Lonvaud-Funel A (1998) Histamine-producing lactic acid Bacteria in wines: early detection, Frequency, and Distribution. Am J Enol Vitic 49:199–204Google Scholar
  25. Crumeyrolle-Arias M et al (2014) Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42:207–217.  https://doi.org/10.1016/j.psyneuen.2014.01.014 CrossRefPubMedGoogle Scholar
  26. Daubert DL, McCowan M, Erdos B, Scheuer DA (2012) Nucleus of the solitary tract catecholaminergic neurons modulate the cardiovascular response to psychological stress in rats. J Physiol 590:4881–4895.  https://doi.org/10.1113/jphysiol.2012.232314 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Davey KJ et al (2012) Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology 221:155–169.  https://doi.org/10.1007/s00213-011-2555-2 CrossRefPubMedGoogle Scholar
  28. De Deurwaerdere P, Di Giovanni G (2017) Serotonergic modulation of the activity of mesencephalic dopaminergic systems: Therapeutic implications. Prog Neurobiol 151:175–236.  https://doi.org/10.1016/j.pneurobio.2016.03.004 CrossRefPubMedGoogle Scholar
  29. de Lartigue G (2014) Putative roles of neuropeptides in vagal afferent signaling. Physiol Behav 136:155–169.  https://doi.org/10.1016/j.physbeh.2014.03.011 CrossRefPubMedGoogle Scholar
  30. de Moreno de LeBlanc A, Dogi CA, Galdeano CM, Carmuega E, Weill R, Perdigon G (2008) Effect of the administration of a fermented milk containing Lactobacillus casei DN-114001 on intestinal microbiota and gut associated immune cells of nursing mice and after weaning until immune maturity. BMC Immunol 9:27.  https://doi.org/10.1186/1471-2172-9-27 CrossRefGoogle Scholar
  31. De Palma G et al (2017) Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med 9.  https://doi.org/10.1126/scitranslmed.aaf6397
  32. de Timary P, Leclercq S, Starkel P, Delzenne N (2015) A dysbiotic subpopulation of alcohol-dependent subjects. Gut Microbes 6:388–391.  https://doi.org/10.1080/19490976.2015.1107696 CrossRefPubMedGoogle Scholar
  33. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF (2014) Microbiota is essential for social development in the mouse. Mol Psychiatry 19:146–148.  https://doi.org/10.1038/mp.2013.65 CrossRefPubMedGoogle Scholar
  34. Desbonnet L et al (2015) Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun 48:165–173.  https://doi.org/10.1016/j.bbi.2015.04.004 CrossRefPubMedGoogle Scholar
  35. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278CrossRefPubMedPubMedCentralGoogle Scholar
  36. Diaz Heijtz R et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052.  https://doi.org/10.1073/pnas.1010529108 CrossRefPubMedGoogle Scholar
  37. Dinan TG, Cryan JF (2018) Schizophrenia and the microbiome: Time to focus on the impact of antipsychotic treatment on the gut microbiota. World J Biol Psychiatry 19:568–570.  https://doi.org/10.1080/15622975.2018.1540793 CrossRefPubMedGoogle Scholar
  38. Erny D et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965–977.  https://doi.org/10.1038/nn.4030 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Fallon J (2005) Could one of the most widely prescribed antibiotics amoxicillin/clavulanate "augmentin" be a risk factor for autism? Med Hypotheses 64:312–315.  https://doi.org/10.1016/j.mehy.2004.06.023 CrossRefPubMedGoogle Scholar
  40. Faraone SV (2018) The pharmacology of amphetamine and methylphenidate: relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 87:255–270.  https://doi.org/10.1016/j.neubiorev.2018.02.001 CrossRefPubMedGoogle Scholar
  41. Ferrier L, Berard F, Debrauwer L, Chabo C, Langella P, Bueno L, Fioramonti J (2006) Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. Am J Pathol 168:1148–1154.  https://doi.org/10.2353/ajpath.2006.050617 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Fields HL, Hjelmstad GO, Margolis EB, Nicola SM (2007) Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 30:289–316.  https://doi.org/10.1146/annurev.neuro.30.051606.094341 CrossRefPubMedGoogle Scholar
  43. Forsyth CB, Farhadi A, Jakate SM, Tang Y, Shaikh M, Keshavarzian A (2009) Lactobacillus GG treatment ameliorates alcohol-induced intestinal oxidative stress, gut leakiness, and liver injury in a rat model of alcoholic steatohepatitis. Alcohol 43:163–172.  https://doi.org/10.1016/j.alcohol.2008.12.009 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Frohlich EE et al. (2016) Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication Brain, behavior, and immunity 56:140–155.  https://doi.org/10.1016/j.bbi.2016.02.020
  45. Frohmader KS, Pitchers KK, Balfour ME, Coolen LM (2010) Mixing pleasures: review of the effects of drugs on sex behavior in humans and animal models. Horm Behav 58:149–162.  https://doi.org/10.1016/j.yhbeh.2009.11.009 CrossRefPubMedGoogle Scholar
  46. Gareau MG et al (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60:307–317.  https://doi.org/10.1136/gut.2009.202515 CrossRefPubMedGoogle Scholar
  47. Ge X, Zhao W, Ding C, Tian H, Xu L, Wang H, Ni L, Jiang J, Gong J, Zhu W, Zhu M, Li N (2017) Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility. Sci Rep 7:441.  https://doi.org/10.1038/s41598-017-00612-y CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gorlick MA, Worthy DA, Knopik VS, McGeary JE, Beevers CG, Maddox WT (2015) DRD4 long allele carriers show heightened attention to high-priority items relative to low-priority items. J Cogn Neurosci 27:509–521.  https://doi.org/10.1162/jocn_a_00724 CrossRefPubMedGoogle Scholar
  49. Graybiel AM, Moratalla R, Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci U S A 87:6912–6916CrossRefPubMedPubMedCentralGoogle Scholar
  50. Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain-gut-microbe communication in health and disease. Front Physiol 2:94.  https://doi.org/10.3389/fphys.2011.00094 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Grossi E, Melli S, Dunca D, Terruzzi V (2016) Unexpected improvement in core autism spectrum disorder symptoms after long-term treatment with probiotics. SAGE Open Med Case Rep 4:2050313X16666231.  https://doi.org/10.1177/2050313X16666231 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Han W et al (2018) A neural circuit for gut-induced reward. Cell 175:665–678 e623.  https://doi.org/10.1016/j.cell.2018.08.049 CrossRefPubMedGoogle Scholar
  53. He Y et al (2018) Gut microbiome and magnetic resonance spectroscopy study of subjects at ultra-high risk for psychosis may support the membrane hypothesis. Eur Psychiatry 53:37–45.  https://doi.org/10.1016/j.eurpsy.2018.05.011 CrossRefPubMedGoogle Scholar
  54. Hoban AE et al (2016) Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience 339:463–477.  https://doi.org/10.1016/j.neuroscience.2016.10.003 CrossRefPubMedGoogle Scholar
  55. Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T, Kato T, Kawashima K (2003) Evolutional study on acetylcholine expression. Life Sci 72:1745–1756CrossRefPubMedGoogle Scholar
  56. Hsiao EY et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463.  https://doi.org/10.1016/j.cell.2013.11.024 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kalia LV, Lang AE (2015) Parkinson's disease. Lancet 386:896–912.  https://doi.org/10.1016/S0140-6736(14)61393-3 CrossRefGoogle Scholar
  58. Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413.  https://doi.org/10.1176/appi.ajp.162.8.1403 CrossRefPubMedGoogle Scholar
  59. Kelly JR et al (2016) Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82:109–118.  https://doi.org/10.1016/j.jpsychires.2016.07.019 CrossRefPubMedGoogle Scholar
  60. Kiernan A (2000) El Sistema Nervioso humano, un punto de vista anatómico., 7° edn.,Google Scholar
  61. Kiraly DD, Walker DM, Calipari ES, Labonte B, Issler O, Pena CJ, Ribeiro EA, Russo SJ, Nestler EJ (2016) Alterations of the Host Microbiome Affect Behavioral Responses to Cocaine. Sci Rep 6:35455.  https://doi.org/10.1038/srep35455 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238.  https://doi.org/10.1038/npp.2009.110 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Landete JM, De las Rivas B, Marcobal A, Munoz R (2008) Updated molecular knowledge about histamine biosynthesis by bacteria. Crit Rev Food Sci Nutr 48:697–714.  https://doi.org/10.1080/10408390701639041 CrossRefPubMedGoogle Scholar
  64. Leclercq S et al (2012) Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects. Brain Behav Immun 26:911–918.  https://doi.org/10.1016/j.bbi.2012.04.001 CrossRefPubMedGoogle Scholar
  65. Leclercq S, De Saeger C, Delzenne N, de Timary P, Starkel P (2014a) Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence. Biol Psychiatry 76:725–733.  https://doi.org/10.1016/j.biopsych.2014.02.003 CrossRefPubMedGoogle Scholar
  66. Leclercq S et al (2014b) Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci U S A 111:E4485–E4493.  https://doi.org/10.1073/pnas.1415174111 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Levy F (2009) Dopamine vs noradrenaline: inverted-U effects and ADHD theories. Aust N Z J Psychiatry 43:101–108.  https://doi.org/10.1080/00048670802607238 CrossRefPubMedGoogle Scholar
  68. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075.  https://doi.org/10.1073/pnas.0504978102 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023.  https://doi.org/10.1038/4441022a CrossRefPubMedPubMedCentralGoogle Scholar
  70. Li ZS, Schmauss C, Cuenca A, Ratcliffe E, Gershon MD (2006) Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D<sub>2</sub> receptor: analysis of dopamine receptor expression, Location, Development, and Function in Wild-Type and Knock-Out Mice. J Neurosci 26:2798–2807.  https://doi.org/10.1523/jneurosci.4720-05.2006 CrossRefPubMedGoogle Scholar
  71. Liang S et al (2015) Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310:561–577.  https://doi.org/10.1016/j.neuroscience.2015.09.033 CrossRefPubMedGoogle Scholar
  72. Liu WH, Chuang HL, Huang YT, Wu CC, Chou GT, Wang S, Tsai YC (2016) Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav Brain Res 298:202–209.  https://doi.org/10.1016/j.bbr.2015.10.046 CrossRefPubMedGoogle Scholar
  73. Luczynski P, Tramullas M, Viola M, Shanahan F, Clarke G, O'Mahony S, Dinan TG, Cryan JF (2017) Microbiota regulates visceral pain in the mouse. Elife 6. doi: https://doi.org/10.7554/eLife.25887
  74. Lynch SV, Pedersen O (2016) The Human Intestinal Microbiome in Health and Disease. N Engl J Med 375:2369–2379.  https://doi.org/10.1056/NEJMra1600266 CrossRefPubMedGoogle Scholar
  75. Lyte M (2013) Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog 9:e1003726.  https://doi.org/10.1371/journal.ppat.1003726 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Maier L et al (2018) Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555:623–628.  https://doi.org/10.1038/nature25979 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Messaoudi M et al (2011) Assessment of psychotropic-like properties of a probiotic formulation ( Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105:755–764.  https://doi.org/10.1017/S0007114510004319 CrossRefPubMedGoogle Scholar
  78. Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P, Musch MW, Liao F, Ward JF, Holtzman DM, Chang EB, Tanzi RE, Sisodia SS (2016) Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Sci Rep 6:30028.  https://doi.org/10.1038/srep30028 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Moya-Perez A, Perez-Villalba A, Benitez-Paez A, Campillo I, Sanz Y (2017) Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice. Brain Behav Immun 65:43–56.  https://doi.org/10.1016/j.bbi.2017.05.011 CrossRefPubMedGoogle Scholar
  80. Mutlu E, Keshavarzian A, Engen P, Forsyth CB, Sikaroodi M, Gillevet P (2009) Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res 33:1836–1846.  https://doi.org/10.1111/j.1530-0277.2009.01022.x CrossRefPubMedPubMedCentralGoogle Scholar
  81. Nehme H, Saulnier P, Ramadan AA, Cassisa V, Guillet C, Eveillard M, Umerska A (2018) Antibacterial activity of antipsychotic agents, their association with lipid nanocapsules and its impact on the properties of the nanocarriers and on antibacterial activity. PLoS One 13:e0189950.  https://doi.org/10.1371/journal.pone.0189950 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128.  https://doi.org/10.1038/35053570 CrossRefPubMedGoogle Scholar
  83. Nestler EJ, Barrot M, Self DW (2001) DeltaFosB: a sustained molecular switch for addiction. Proc Natl Acad Sci U S A 98:11042–11046.  https://doi.org/10.1073/pnas.191352698 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Niehaus I, Lange JH (2003) Endotoxin: is it an environmental factor in the cause of Parkinson’s disease? Occup Environ Med 60:378–378.  https://doi.org/10.1136/oem.60.5.378 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Nieoullon A (2002) Dopamine and the regulation of cognition and attention. Prog Neurobiol 67:53–83CrossRefPubMedGoogle Scholar
  86. Nishino R et al (2013) Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil 25:521–528.  https://doi.org/10.1111/nmo.12110 CrossRefPubMedGoogle Scholar
  87. Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O'Leary OF (2015) Adult Hippocampal Neurogenesis Is Regulated by the Microbiome. Biol Psychiatry 78:e7–e9.  https://doi.org/10.1016/j.biopsych.2014.12.023 CrossRefPubMedGoogle Scholar
  88. Özogul F (2011) Effects of specific lactic acid bacteria species on biogenic amine production by foodborne pathogen. Int J Food Sci Technol 46:478–484.  https://doi.org/10.1111/j.1365-2621.2010.02511.x CrossRefGoogle Scholar
  89. Palmiter RD (2007) Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci 30:375–381.  https://doi.org/10.1016/j.tins.2007.06.004 CrossRefPubMedGoogle Scholar
  90. Partty A, Kalliomaki M, Wacklin P, Salminen S, Isolauri E (2015) A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatr Res 77:823–828.  https://doi.org/10.1038/pr.2015.51 CrossRefPubMedGoogle Scholar
  91. Phelps EA (2004) Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 14:198–202.  https://doi.org/10.1016/j.conb.2004.03.015 CrossRefPubMedGoogle Scholar
  92. Pokusaeva K, Johnson C, Luk B, Uribe G, Fu Y, Oezguen N, Matsunami RK, Lugo M, Major A, Mori-Akiyama Y, Hollister EB, Dann SM, Shi XZ, Engler DA, Savidge T, Versalovic J (2017) GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol Motil 29.  https://doi.org/10.1111/nmo.12904
  93. Quach LA et al (2008) Drug use and other risk factors related to lower body mass index among HIV-infected individuals. Drug Alcohol Depend 95:30–36.  https://doi.org/10.1016/j.drugalcdep.2007.12.004 CrossRefPubMedGoogle Scholar
  94. Rampino A, Marakhovskaia A, Soares-Silva T, Torretta S, Veneziani F, Beaulieu JM (2018) Antipsychotic Drug Responsiveness and Dopamine Receptor Signaling; Old Players and New Prospects. Front Psychiatry 9:702.  https://doi.org/10.3389/fpsyt.2018.00702 CrossRefPubMedGoogle Scholar
  95. Rautava S, Luoto R, Salminen S, Isolauri E (2012) Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 9:565–576.  https://doi.org/10.1038/nrgastro.2012.144 CrossRefPubMedGoogle Scholar
  96. Roberfroid M (2007) Prebiotics: the concept revisited. J Nutr 137:830S–837S.  https://doi.org/10.1093/jn/137.3.830S CrossRefPubMedGoogle Scholar
  97. Rogers GB, Keating DJ, Young RL, Wong ML, Licinio J, Wesselingh S (2016) From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry 21:738–748.  https://doi.org/10.1038/mp.2016.50 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Roozendaal B, McEwen BS, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev Neurosci 10:423–433.  https://doi.org/10.1038/nrn2651 CrossRefPubMedGoogle Scholar
  99. Roy Sarkar S, Banerjee S (2019) Gut microbiota in neurodegenerative disorders. J Neuroimmunol 328:98–104.  https://doi.org/10.1016/j.jneuroim.2019.01.004 CrossRefPubMedGoogle Scholar
  100. Russo SJ, Nestler EJ (2013) The brain reward circuitry in mood disorders. Nat Rev Neurosci 14:609–625.  https://doi.org/10.1038/nrn3381 CrossRefGoogle Scholar
  101. Salgado S, Kaplitt MG (2015) The Nucleus Accumbens: A Comprehensive Review. Stereotact Funct Neurosurg 93:75–93.  https://doi.org/10.1159/000368279 CrossRefPubMedGoogle Scholar
  102. Sampson TR et al (2016) Gut microbiota regulate motor deficits and Neuroinflammation in a model of Parkinson's disease. Cell 167:1469–1480 e1412.  https://doi.org/10.1016/j.cell.2016.11.018 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF (2017) Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res 179:223–244.  https://doi.org/10.1016/j.trsl.2016.10.002 CrossRefPubMedGoogle Scholar
  104. Saper CB (2004) CHAPTER 24 - central autonomic system. In: Paxinos G (ed) The rat nervous system, Third edn. Academic Press, Burlington, pp 761–796.  https://doi.org/10.1016/B978-012547638-6/50025-0 CrossRefGoogle Scholar
  105. Savica R et al (2009) Medical records documentation of constipation preceding Parkinson disease a case-control study. Neurology 73:1752–1758.  https://doi.org/10.1212/WNL.0b013e3181c34af5 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Sawada H, Umemura A, Kohsaka M, Tomita S, Park K, Oeda T, Yamamoto K (2018) Pharmacological interventions for anxiety in Parkinson's disease sufferers. Expert Opin Pharmacother 19:1071–1076.  https://doi.org/10.1080/14656566.2018.1485650 CrossRefPubMedGoogle Scholar
  107. Scheperjans F et al (2015) Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord 30:350–358.  https://doi.org/10.1002/mds.26069 CrossRefPubMedGoogle Scholar
  108. Schwarz E et al (2018) Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr Res 192:398–403.  https://doi.org/10.1016/j.schres.2017.04.017 CrossRefPubMedGoogle Scholar
  109. Scorza C, Piccini C, Martinez Busi M, Abin Carriquiry JA, Zunino P (2018) Alterations in the gut microbiota of rats chronically exposed to volatilized cocaine and its active adulterants caffeine and phenacetin. Neurotox Res.  https://doi.org/10.1007/s12640-018-9936-9
  110. Shaaban SY, El Gendy YG, Mehanna NS, El-Senousy WM, El-Feki HSA, Saad K, El-Asheer OM (2017) The role of probiotics in children with autism spectrum disorder: a prospective, open-label study. Nutr Neurosci 1-6. doi: https://doi.org/10.1080/1028415X.2017.1347746
  111. Shannon KM, Keshavarzian A, Dodiya HB, Jakate S, Kordower JH (2012) Is alpha-synuclein in the colon a biomarker for premotor Parkinson's Disease? Evidence from 3 cases. Movement Disorders 27:716–719.  https://doi.org/10.1002/mds.25020 CrossRefPubMedGoogle Scholar
  112. Simon JR, DiMicco SK, Aprison MH (1985) Neurochemical studies of the nucleus of the solitary tract, dorsal motor nucleus of the vagus and the hypoglossal nucleus in rat: topographical distribution of glutamate uptake, GABA uptake and glutamic acid decarboxylase activity. Brain Res Bull 14:49–53.  https://doi.org/10.1016/0361-9230(85)90176-5 CrossRefPubMedGoogle Scholar
  113. Slykerman RF, Thompson J, Waldie KE, Murphy R, Wall C, Mitchell EA (2017) Antibiotics in the first year of life and subsequent neurocognitive outcomes. Acta Paediatr 106:87–94.  https://doi.org/10.1111/apa.13613 CrossRefPubMedGoogle Scholar
  114. Stephenson M, Rowatt E (1947) The production of acetylcholine by a strain of Lactobacillus plantarum. J Gen Microbiol 1:279–298.  https://doi.org/10.1099/00221287-1-3-279 CrossRefPubMedGoogle Scholar
  115. Sudo N et al (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558:263–275.  https://doi.org/10.1113/jphysiol.2004.063388 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Szabadi E (2013) Functional neuroanatomy of the central noradrenergic system. J Psychopharmacol 27:659–693.  https://doi.org/10.1177/0269881113490326 CrossRefPubMedGoogle Scholar
  117. Tillisch K et al (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144:1394–1401, 1401 e1391-1394.  https://doi.org/10.1053/j.gastro.2013.02.043 CrossRefPubMedGoogle Scholar
  118. Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, Ostatnikova D (2015) Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav 138:179–187.  https://doi.org/10.1016/j.physbeh.2014.10.033 CrossRefPubMedGoogle Scholar
  119. van Huijstee AN, Mansvelder HD (2014) Glutamatergic synaptic plasticity in the mesocorticolimbic system in addiction. Front Cell Neurosci 8:466.  https://doi.org/10.3389/fncel.2014.00466 CrossRefPubMedGoogle Scholar
  120. van Kessel SP, Frye AK, El-Gendy AO, Castejon M, Keshavarzian A, van Dijk G, El Aidy S (2019) Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson's disease. Nat Commun 10:310.  https://doi.org/10.1038/s41467-019-08294-y CrossRefPubMedPubMedCentralGoogle Scholar
  121. Vassallo G, Mirijello A, Ferrulli A, Antonelli M, Landolfi R, Gasbarrini A, Addolorato G (2015) Review article: Alcohol and gut microbiota - the possible role of gut microbiota modulation in the treatment of alcoholic liver disease. Aliment Pharmacol Ther 41:917–927.  https://doi.org/10.1111/apt.13164 CrossRefPubMedGoogle Scholar
  122. Volkow ND, Fowler JS (2000) Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex 10:318–325CrossRefPubMedGoogle Scholar
  123. Volpe GE, Ward H, Mwamburi M, Dinh D, Bhalchandra S, Wanke C, Kane AV (2014) Associations of cocaine use and HIV infection with the intestinal microbiota, microbial translocation, and inflammation. J Stud Alcohol Drugs 75:347–357CrossRefPubMedPubMedCentralGoogle Scholar
  124. Wall R, Cryan JF, Ross RP, Fitzgerald GF, Dinan TG, Stanton C (2014) Bacterial neuroactive compounds produced by psychobiotics. Adv Exp Med Biol 817:221–239.  https://doi.org/10.1007/978-1-4939-0897-4_10 CrossRefPubMedGoogle Scholar
  125. Wang ZW et al (2011) Early-life exposure to lipopolysaccharide reduces the severity of experimental autoimmune encephalomyelitis in adulthood and correlated with increased urine corticosterone and apoptotic CD4+ T cells. Neuroscience 193:283–290.  https://doi.org/10.1016/j.neuroscience.2011.07.047 CrossRefPubMedGoogle Scholar
  126. Xiao HW et al (2018) Gut microbiota modulates alcohol withdrawal-induced anxiety in mice. Toxicol Lett 287:23–30.  https://doi.org/10.1016/j.toxlet.2018.01.021 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Yarnall A, Archibald N, Burn D (2012) Parkinson's disease. Medicine 40:529–535.  https://doi.org/10.1016/j.mpmed.2012.07.008 CrossRefGoogle Scholar
  128. Yuan X et al (2018) Changes in metabolism and microbiota after 24-week risperidone treatment in drug naïve, normal weight patients with first episode schizophrenia. Schizophr Res 201:299–306.  https://doi.org/10.1016/j.schres.2018.05.017 CrossRefPubMedGoogle Scholar
  129. Yunes RA et al (2016) GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 42:197–204.  https://doi.org/10.1016/j.anaerobe.2016.10.011 CrossRefPubMedGoogle Scholar
  130. Zarrindast MR, Khakpai F (2015) The modulatory role of dopamine in anxiety-like behavior. Arch Iran Med 18:591–603PubMedGoogle Scholar
  131. Zheng P et al (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol Psychiatry 21:786–796.  https://doi.org/10.1038/mp.2016.44 CrossRefPubMedGoogle Scholar
  132. Zweifel LS et al (2011) Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci 14:620–626.  https://doi.org/10.1038/nn.2808 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Camila González-Arancibia
    • 1
    • 2
    • 3
  • Jocelyn Urrutia-Piñones
    • 1
    • 3
  • Javiera Illanes-González
    • 1
    • 3
  • Jonathan Martinez-Pinto
    • 2
  • Ramón Sotomayor-Zárate
    • 2
  • Marcela Julio-Pieper
    • 1
  • Javier A. Bravo
    • 1
    Email author
  1. 1.Grupo de NeuroGastroBioquímica, Laboratorio de Química Biológica y Bioquímica de Sistemas, Instituto de Química, Facultad de CienciasPontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de CienciasUniversidad de ValparaísoValparaísoChile
  3. 3.Programa de Doctorado en Ciencias mención Neurociencia, Facultad de Ciencias, Universidad de ValparaísoValparaísoChile

Personalised recommendations