Advertisement

Psychopharmacology

, Volume 236, Issue 5, pp 1583–1596 | Cite as

Pharmacological restoration of gut barrier function in stressed neonates partially reverses long-term alterations associated with maternal separation

  • Marion Rincel
  • Maïwenn Olier
  • Amandine Minni
  • Camille Monchaux de Oliveira
  • Yann Matime
  • Eric Gaultier
  • Isabelle Grit
  • Jean-Christophe Helbling
  • Anna Maria Costa
  • Amandine Lépinay
  • Marie-Pierre Moisan
  • Sophie Layé
  • Laurent Ferrier
  • Patricia Parnet
  • Vassilia Theodorou
  • Muriel DarnaudéryEmail author
Original Investigation

Abstract

Rationale

Intestinal permeability plays an important role in gut-brain axis communication. Recent studies indicate that intestinal permeability increases in neonate pups during maternal separation (MS).

Objectives

The present study aims to determine whether pharmacological inhibition of myosin light chain kinase (MLCK), which regulates tight junction contraction and controls intestinal permeability, in stressed neonates, protects against the long-term effects of MS.

Methods

Male Wistar rats were exposed to MS (3 h per day from post-natal day (PND)2 to PND14) or left undisturbed and received daily intraperitoneal injection of a MLCK inhibitor (ML-7, 5 mg/kg) or vehicle during the same period. At adulthood, emotional behaviors, corticosterone response to stress, and gut microbiota composition were analyzed.

Results

ML-7 restored gut barrier function in MS rats specifically during the neonatal period. Remarkably, ML-7 prevented MS-induced sexual reward–seeking impairment and reversed the alteration of corticosterone response to stress at adulthood. The effects of ML-7 were accompanied by the normalization of the abundance of members of Lachnospiraceae, Clostridiales, Desulfovibrio, Bacteroidales, Enterorhabdus, and Bifidobacterium in the feces of MS rats at adulthood.

Conclusions

Altogether, our work suggests that improvement of intestinal barrier defects during development may alleviate some of the long-term effects of early-life stress and provides new insight on brain–gut axis communication in a context of stress.

Keywords

Intestinal permeability Myosin light chain kinase Early-life stress Depression Irritable bowel syndrome Animal models Intestinal barrier Blood-brain barrier Female urine sniffing test 16S sequencing 

Notes

Acknowledgements

This work was supported by Univ. Bordeaux, the AlimH department of the Institut National de la Recherche Agronomique (INRA), projet inter-régions Aquitaine - Midi-pyrénées, ITMO neurosciences, sciences cognitives, neurologie, psychiatrie. MD was supported by the FFAS (Fond français alimentation santé) and the ANR (Agence Nationale de la Recherche). M.R. and A.L. were supported by a stipend of the French Ministry of Research. AMC was the recipient of a Master fellowship from the Erasmus+ program. The authors acknowledge technical help from Agnès Aubert, Julie Sauvant, and Michèle Nankap for cytokines assay, c-FOS analysis, and genomic bacterial DNA extraction. The authors are grateful to P Costet for his valuable advice for BBB permeability experiment. The authors are grateful to the Get-platform teams (TRIX & PlaGe, Toulouse) for 16S rDNA libraries and sequencing, Genotoul bioinformatics platform Toulouse Midi-Pyrénées, and Sigenae group for providing help and storage resources thanks to Galaxy instance http://sigenae-workbench.toulouse.inra.fr.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

213_2019_5252_MOESM1_ESM.doc (2.3 mb)
ESM 1 (DOC 2399 kb)

References

  1. Ait-Belgnaoui A, Bradesi S, Fioramonti J, Theodorou V, Bueno L (2005) Acute stress-induced hypersensitivity to colonic distension depends upon increase in paracellular permeability: role of myosin light chain kinase. Pain 113:141–147.  https://doi.org/10.1016/j.pain.2004.10.002 CrossRefPubMedGoogle Scholar
  2. Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, Houdeau E, Fioramonti J, Bueno L, Theodorou V (2012) Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37:1885–1895.  https://doi.org/10.1016/j.psyneuen.2012.03.024 CrossRefPubMedGoogle Scholar
  3. Ait-Belgnaoui A, Colom A, Braniste V, Ramalho L, Marrot A, Cartier C, Houdeau E, Theodorou V, Tompkins T (2014) Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol Motil 26:510–520.  https://doi.org/10.1111/nmo.12295 CrossRefPubMedGoogle Scholar
  4. Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3:e2836.  https://doi.org/10.1371/journal.pone.0002836 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barreau F, Ferrier L, Fioramonti J, Bueno L (2004) Neonatal maternal deprivation triggers long term alterations in colonic epithelial barrier and mucosal immunity in rats. Gut 53:501–506CrossRefGoogle Scholar
  6. Barreau F, Ferrier L, Fioramonti J, Bueno L (2007) New insights in the etiology and pathophysiology of irritable bowel syndrome: contribution of neonatal stress models. Pediatr Res 62:240–245.  https://doi.org/10.1203/PDR.0b013e3180db2949 CrossRefPubMedGoogle Scholar
  7. Beard RS, Haines RJ, Wu KY, Reynolds JJ, Davis SM, Elliott JE, Malinin NL, Chatterjee V, Cha BJ, Wu MH, Yuan SY (2014) Non-muscle Mlck is required for β-catenin- and FoxO1-dependent downregulation of Cldn5 in IL-1β-mediated barrier dysfunction in brain endothelial cells. J Cell Sci 127:1840–1853.  https://doi.org/10.1242/jcs.144550 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, Malinowski P, Jackson W, Blennerhassett P, Neufeld KA, Lu J, Khan WI, Corthesy–Theulaz I, Cherbut C, Bergonzelli GE, Collins SM (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139:2102–2112.e1.  https://doi.org/10.1053/j.gastro.2010.06.063 CrossRefPubMedGoogle Scholar
  9. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli GE, Collins SM, Verdu EF (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23:1132–1139.  https://doi.org/10.1111/j.1365-2982.2011.01796.x CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bolton JL, Molet J, Regev L, Chen Y, Rismanchi N, Haddad E, Yang DZ, Obenaus A, Baram TZ (2017) Anhedonia following early-life adversity involves aberrant interaction of reward and anxiety circuits and is reversed by partial silencing of amygdala corticotropin-releasing hormone gene. Biol Psychiatry 83:137–147.  https://doi.org/10.1016/j.biopsych.2017.08.023 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bradford K, Shih W, Videlock EJ, Presson AP, Naliboff BD, Mayer EA, Chang L (2012) Association between early adverse life events and irritable bowel syndrome. Clin Gastroenterol Hepatol 10:385–390.e3.  https://doi.org/10.1016/j.cgh.2011.12.018 CrossRefPubMedGoogle Scholar
  12. Branchi I, Santucci D, Alleva E (2001) Ultrasonic vocalisation emitted by infant rodents: a tool for assessment of neurobehavioural development. Behav Brain Res 125:49–56CrossRefGoogle Scholar
  13. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108:16050–16055.  https://doi.org/10.1073/pnas.1102999108 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Burokas A, Moloney RD, Dinan TG, Cryan JF (2015) Microbiota regulation of the mammalian gut-brain axis. Adv Appl Microbiol 91:1–62.  https://doi.org/10.1016/bs.aambs.2015.02.001 CrossRefPubMedGoogle Scholar
  15. Chapman DP, Whitfield CL, Felitti VJ, Dube SR, Edwards VJ, Anda RF (2004) Adverse childhood experiences and the risk of depressive disorders in adulthood. J Affect Disord 82:217–225.  https://doi.org/10.1016/j.jad.2003.12.013 CrossRefPubMedGoogle Scholar
  16. Chitkara DK, van Tilburg MAL, Blois-Martin N, Whitehead WE (2008) Early life risk factors that contribute to irritable bowel syndrome in adults: a systematic review. Am J Gastroenterol 103:765–774; quiz 775.  https://doi.org/10.1111/j.1572-0241.2007.01722.x CrossRefPubMedGoogle Scholar
  17. Crouzet L, Gaultier E, Del’Homme C et al (2013) The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Motil 25:e272–e282.  https://doi.org/10.1111/nmo.12103 CrossRefPubMedGoogle Scholar
  18. Cunningham KE, Turner JR (2012) Myosin light chain kinase: pulling the strings of epithelial tight junction function. Ann N Y Acad Sci 1258:34–42.  https://doi.org/10.1111/j.1749-6632.2012.06526.x CrossRefPubMedPubMedCentralGoogle Scholar
  19. de Magistris L, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P, Carteni M, de Rosa M, Francavilla R, Riegler G, Militerni R, Bravaccio C (2010) Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr 51:418–424.  https://doi.org/10.1097/MPG.0b013e3181dcc4a5 CrossRefPubMedGoogle Scholar
  20. De Palma G, Blennerhassett P, Lu J et al (2015) Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun 6:7735.  https://doi.org/10.1038/ncomms8735 CrossRefPubMedGoogle Scholar
  21. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170:1179–1188.  https://doi.org/10.1016/j.neuroscience.2010.08.005 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, Cotter PD, Dinan TG, Cryan JF (2015) Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun 48:165–173.  https://doi.org/10.1016/j.bbi.2015.04.004 CrossRefGoogle Scholar
  23. Dinan TG, Cryan JF (2012) Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37:1369–1378.  https://doi.org/10.1016/j.psyneuen.2012.03.007 CrossRefGoogle Scholar
  24. Do Prado CH, Narahari T, Holland FH et al (2015) Effects of early adolescent environmental enrichment on cognitive dysfunction, prefrontal cortex development, and inflammatory cytokines after early life stress. Dev Psychobiol 58:482–491.  https://doi.org/10.1002/dev.21390 CrossRefPubMedGoogle Scholar
  25. Duncan SH, Louis P, Thomson JM, Flint HJ (2009) The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 11:2112–2122.  https://doi.org/10.1111/j.1462-2920.2009.01931.x CrossRefPubMedGoogle Scholar
  26. El Aidy S, Ramsteijn AS, Dini-Andreote F et al (2017) Serotonin transporter genotype modulates the gut microbiota composition in young rats, an effect augmented by early life stress. Front Cell Neurosci 11:222.  https://doi.org/10.3389/fncel.2017.00222 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ferrier L, Mazelin L, Cenac N, Desreumaux P, Janin A, Emilie D, Colombel JF, Garcia-Villar R, Fioramonti J, Bueno L (2003) Stress-induced disruption of colonic epithelial barrier: role of interferon-gamma and myosin light chain kinase in mice. Gastroenterology 125:795–804CrossRefGoogle Scholar
  28. Folks DG (2004) The interface of psychiatry and irritable bowel syndrome. Curr Psychiatry Rep 6:210–215CrossRefGoogle Scholar
  29. Foster JA, McVey Neufeld K-A (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312.  https://doi.org/10.1016/j.tins.2013.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH (2007a) Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56:1522–1528.  https://doi.org/10.1136/gut.2006.117176 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gareau MG, Jury J, Perdue MH (2007b) Neonatal maternal separation of rat pups results in abnormal cholinergic regulation of epithelial permeability. Am J Physiol Gastrointest Liver Physiol 293:G198–G203.  https://doi.org/10.1152/ajpgi.00392.2006 CrossRefPubMedGoogle Scholar
  32. Gómez-González B, Escobar A (2009) Altered functional development of the blood-brain barrier after early life stress in the rat. Brain Res Bull 79:376–387.  https://doi.org/10.1016/j.brainresbull.2009.05.012 CrossRefPubMedGoogle Scholar
  33. Gutman DA, Nemeroff CB (2002) Neurobiology of early life stress: rodent studies. Semin Clin Neuropsychiatry 7:89–95CrossRefGoogle Scholar
  34. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness. Front Neuroendocrinol 24:151–180.  https://doi.org/10.1016/j.yfrne.2003.07.001 CrossRefPubMedGoogle Scholar
  35. Herman JP, McKlveen JM, Ghosal S et al (2016) Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol 6:603–621.  https://doi.org/10.1002/cphy.c150015 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hsiao EY, McBride SW, Hsien S et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463.  https://doi.org/10.1016/j.cell.2013.11.024 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jakobsson HE, Rodríguez-Piñeiro AM, Schütte A et al (2015) The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 16:164–177.  https://doi.org/10.15252/embr.201439263 CrossRefPubMedGoogle Scholar
  38. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP (2015) Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 9:392.  https://doi.org/10.3389/fncel.2015.00392 CrossRefPubMedPubMedCentralGoogle Scholar
  39. König J, Wells J, Cani PD, García-Ródenas CL, MacDonald T, Mercenier A, Whyte J, Troost F, Brummer RJ (2016) Human intestinal barrier function in health and disease. Clin Transl Gastroenterol 7:e196.  https://doi.org/10.1038/ctg.2016.54 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kuhlmann CRW, Tamaki R, Gamerdinger M, Lessmann V, Behl C, Kempski OS, Luhmann HJ (2007) Inhibition of the myosin light chain kinase prevents hypoxia-induced blood-brain barrier disruption: ML-7 prevents hypoxic brain edema formation. J Neurochem 102:501–507.  https://doi.org/10.1111/j.1471-4159.2007.04506.x CrossRefPubMedGoogle Scholar
  41. Leclercq S, Mian FM, Stanisz AM, Bindels LB, Cambier E, Ben-Amram H, Koren O, Forsythe P, Bienenstock J (2017) Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat Commun 8:15062.  https://doi.org/10.1038/ncomms15062 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Li Y, Yang T, Yao Q et al (2019) Metformin prevents colonic barrier dysfunction by inhibiting mast cell activation in maternal separation-induced IBS-like rats. Neurogastroenterol Motil:e13556.  https://doi.org/10.1111/nmo.13556 CrossRefGoogle Scholar
  43. Liang S, Wang T, Hu X, Luo J, Li W, Wu X, Duan Y, Jin F (2015) Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310:561–577.  https://doi.org/10.1016/j.neuroscience.2015.09.033 CrossRefPubMedGoogle Scholar
  44. Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35:e120.  https://doi.org/10.1093/nar/gkm541 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Liu X, Xu J, Mei Q, Han L, Huang J (2013) Myosin light chain kinase inhibitor inhibits dextran sulfate sodium-induced colitis in mice. Dig Dis Sci 58:107–114.  https://doi.org/10.1007/s10620-012-2304-3 CrossRefPubMedGoogle Scholar
  46. Luczynski P, McVey Neufeld K-A, Oriach CS, Clarke G, Dinan TG, Cryan JF (2016) Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol 19:pyw020.  https://doi.org/10.1093/ijnp/pyw020 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Luh C, Kuhlmann CR, Ackermann B, Timaru-Kast R, Luhmann HJ, Behl C, Werner C, Engelhard K, Thal SC (2010) Inhibition of myosin light chain kinase reduces brain edema formation after traumatic brain injury. J Neurochem 112:1015–1025.  https://doi.org/10.1111/j.1471-4159.2009.06514.x CrossRefPubMedGoogle Scholar
  48. Macfarlane GT, Gibson GR, Cummings JH (1992) Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 72:57–64PubMedGoogle Scholar
  49. Maes M, Kubera M, Leunis J-C (2008) The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett 29:117–124PubMedGoogle Scholar
  50. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinforma Oxf Engl 27:2957–2963.  https://doi.org/10.1093/bioinformatics/btr507 CrossRefGoogle Scholar
  51. Moussaoui N, Braniste V, Ait-Belgnaoui A, Gabanou M, Sekkal S, Olier M, Théodorou V, Martin PGP, Houdeau E (2014) Changes in intestinal glucocorticoid sensitivity in early life shape the risk of epithelial barrier defect in maternal-deprived rats. PLoS One 9:e88382.  https://doi.org/10.1371/journal.pone.0088382 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Moya-Pérez A, Perez-Villalba A, Benítez-Páez A, Campillo I, Sanz Y (2017) Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice. Brain Behav Immun 65:43–56.  https://doi.org/10.1016/j.bbi.2017.05.011 CrossRefPubMedGoogle Scholar
  53. Murakami T, Kamada K, Mizushima K, Higashimura Y, Katada K, Uchiyama K, Handa O, Takagi T, Naito Y, Itoh Y (2017) Changes in intestinal motility and gut microbiota composition in a rat stress model. Digestion 95:55–60.  https://doi.org/10.1159/000452364 CrossRefPubMedGoogle Scholar
  54. O’Mahony SM, Hyland NP, Dinan TG, Cryan JF (2011) Maternal separation as a model of brain-gut axis dysfunction. Psychopharmacology 214:71–88.  https://doi.org/10.1007/s00213-010-2010-9 CrossRefPubMedPubMedCentralGoogle Scholar
  55. O’Malley D, Julio-Pieper M, Gibney SM et al (2010) Distinct alterations in colonic morphology and physiology in two rat models of enhanced stress-induced anxiety and depression-like behaviour. Stress Amst Neth 13:114–122.  https://doi.org/10.3109/10253890903067418 CrossRefGoogle Scholar
  56. Pigrau M, Rodiño-Janeiro BK, Casado-Bedmar M, Lobo B, Vicario M, Santos J, Alonso-Cotoner C (2016) The joint power of sex and stress to modulate brain-gut-microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome. Neurogastroenterol Motil 28:463–486CrossRefGoogle Scholar
  57. Pinheiro RMC, de Lima MNM, Portal BCD, Busato SB, Falavigna L, Ferreira RDP, Paz AC, de Aguiar BW, Kapczinski F, Schröder N (2014) Long-lasting recognition memory impairment and alterations in brain levels of cytokines and BDNF induced by maternal deprivation: effects of valproic acid and topiramate. J Neural Transm 122:709–719.  https://doi.org/10.1007/s00702-014-1303-2 CrossRefPubMedGoogle Scholar
  58. Pusceddu MM, El Aidy S, Crispie F et al (2015) N-3 polyunsaturated fatty acids (PUFAs) reverse the impact of early-life stress on the gut microbiota. PLoS One 10:e0139721.  https://doi.org/10.1371/journal.pone.0139721 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Reunanen J, Kainulainen V, Huuskonen L, Ottman N, Belzer C, Huhtinen H, de Vos WM, Satokari R (2015) Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl Environ Microbiol 81:3655–3662.  https://doi.org/10.1128/AEM.04050-14 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Réus GZ, Fernandes GC, de Moura AB, Silva RH, Darabas AC, de Souza TG, Abelaira HM, Carneiro C, Wendhausen D, Michels M, Pescador B, Dal-Pizzol F, Macêdo DS, Quevedo J (2017) Early life experience contributes to the developmental programming of depressive-like behaviour, neuroinflammation and oxidative stress. J Psychiatr Res 95:196–207.  https://doi.org/10.1016/j.jpsychires.2017.08.020 CrossRefPubMedGoogle Scholar
  61. Rincel M, Lépinay AL, Delage P, Fioramonti J, Théodorou VS, Layé S, Darnaudéry M (2016) Maternal high-fat diet prevents developmental programming by early-life stress. Transl Psychiatry 6:e966.  https://doi.org/10.1038/tp.2016.235 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Rincel M, Lépinay AL, Janthakhin Y, Soudain G, Yvon S, da Silva S, Joffre C, Aubert A, Séré A, Layé S, Theodorou V, Ferreira G, Darnaudéry M (2017) Maternal high-fat diet and early life stress differentially modulate spine density and dendritic morphology in the medial prefrontal cortex of juvenile and adult rats. Brain Struct Funct 223:883–895.  https://doi.org/10.1007/s00429-017-1526-8 CrossRefPubMedGoogle Scholar
  63. Rios AC, Maurya PK, Pedrini M, Zeni-Graiff M, Asevedo E, Mansur RB, Wieck A, Grassi-Oliveira R, McIntyre RS, Hayashi MAF, Brietzke E (2017) Microbiota abnormalities and the therapeutic potential of probiotics in the treatment of mood disorders. Rev Neurosci 28.  https://doi.org/10.1515/revneuro-2017-0001
  64. Roque S, Mesquita AR, Palha JA, Sousa N, Correia-Neves M (2014) The behavioral and immunological impact of maternal separation: a matter of timing. Front Behav Neurosci 8.  https://doi.org/10.3389/fnbeh.2014.00192
  65. Savignac HM, Kiely B, Dinan TG, Cryan JF (2014) Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil 26:1615–1627.  https://doi.org/10.1111/nmo.12427 CrossRefPubMedGoogle Scholar
  66. Vanuytsel T, van Wanrooy S, Vanheel H, Vanormelingen C, Verschueren S, Houben E, Salim Rasoel S, Tόth J, Holvoet L, Farré R, van Oudenhove L, Boeckxstaens G, Verbeke K, Tack J (2014) Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 63:1293–1299.  https://doi.org/10.1136/gutjnl-2013-305690 CrossRefPubMedGoogle Scholar
  67. Wieck A, Andersen SL, Brenhouse HC (2013) Evidence for a neuroinflammatory mechanism in delayed effects of early life adversity in rats: relationship to cortical NMDA receptor expression. Brain Behav Immun 28:218–226.  https://doi.org/10.1016/j.bbi.2012.11.012 CrossRefPubMedGoogle Scholar
  68. Zakostelska Z, Kverka M, Klimesova K, Rossmann P, Mrazek J, Kopecny J, Hornova M, Srutkova D, Hudcovic T, Ridl J, Tlaskalova-Hogenova H (2011) Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS One 6:e27961.  https://doi.org/10.1371/journal.pone.0027961 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zhou X-Y, Li M, Li X et al (2016) Visceral hypersensitive rats share common dysbiosis features with irritable bowel syndrome patients. World J Gastroenterol 22:5211–5227.  https://doi.org/10.3748/wjg.v22.i22.5211 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Zong Y, Zhu S, Zhang S, Zheng G, Wiley JW, Hong S (2019) Chronic stress and intestinal permeability: lubiprostone regulates glucocorticoid receptor-mediated changes in colon epithelial tight junction proteins, barrier function, and visceral pain in the rodent and human. Neurogastroenterol Motil 31:e13477.  https://doi.org/10.1111/nmo.13477 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marion Rincel
    • 1
  • Maïwenn Olier
    • 2
  • Amandine Minni
    • 1
  • Camille Monchaux de Oliveira
    • 1
  • Yann Matime
    • 1
  • Eric Gaultier
    • 2
  • Isabelle Grit
    • 3
  • Jean-Christophe Helbling
    • 1
  • Anna Maria Costa
    • 1
  • Amandine Lépinay
    • 1
  • Marie-Pierre Moisan
    • 1
  • Sophie Layé
    • 1
  • Laurent Ferrier
    • 2
  • Patricia Parnet
    • 3
  • Vassilia Theodorou
    • 2
  • Muriel Darnaudéry
    • 1
    Email author
  1. 1.Univ. Bordeaux, INRA, Bordeaux INPNutriNeuro, UMR 1286BordeauxFrance
  2. 2.Laboratoire Toxalim, UMR 1331University of Toulouse III (UPS), INP-EI-Purpan, INRAToulouseFrance
  3. 3.UMR 1280Institut des maladies de l’appareil digestif, PhAN, INRA, University of NantesNantesFrance

Personalised recommendations