Advertisement

A potential role for the gut microbiome in substance use disorders

  • Katherine R. Meckel
  • Drew D. KiralyEmail author
Review

Abstract

Pathological substance use disorders represent a major public health crisis with limited effective treatment options. While much work has been done to understand the neuronal signaling networks and intracellular signaling cascades associated with prolonged drug use, these studies have yielded few successful treatment options for substance use disorders. In recent years, there has been a growing interest to explore interactions between the peripheral immune system, the gut microbiome, and the CNS. In this review, we will present a summary of existing evidence, suggesting a potential role for gut dysbiosis in the pathogenesis of substance use disorders. Clinical evidence of gut dysbiosis in human subjects with substance use disorder and preclinical evidence of gut dysbiosis in animal models of drug addiction are discussed in detail. Additionally, we examine how changes in the gut microbiome and its metabolites may not only be a consequence of substance use disorders but may in fact play a role in mediating behavioral response to drugs of abuse. While much work still needs to be done, understanding the interplay of gut microbiome in substance use disorders may offer a promising avenue for future therapeutic development.

Keywords

Addiction Microbiome Microbiota Dysbiosis Metabolites Opioid Cocaine Alcohol Gut-brain 

Notes

Funding information

This work was supported by NIH grant DA044308, a NARSAD young investigator grant, and startup funds from the Icahn School of Medicine at Mount Sinai all to D.D.K.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Acharya C, Betrapally NS, Gillevet PM et al (2017) Chronic opioid use is associated with altered gut microbiota and predicts readmissions in patients with cirrhosis. Aliment Pharmacol Ther 45:319–331.  https://doi.org/10.1111/apt.13858 CrossRefPubMedGoogle Scholar
  2. Adolph TE, Grander C, Moschen AR, Tilg H (2018) Liver-microbiome axis in health and disease. Trends Immunol 39:712–723.  https://doi.org/10.1016/j.it.2018.05.002 CrossRefPubMedGoogle Scholar
  3. Agus A, Planchais J, Sokol H (2018) Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23:716–724.  https://doi.org/10.1016/j.chom.2018.05.003 CrossRefPubMedGoogle Scholar
  4. Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339:156–161.  https://doi.org/10.1126/science.1227901 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ayata P, Badimon A, Strasburger HJ et al (2018) Epigenetic regulation of brain region-specific microglia clearance activity. Nat Neurosci 21:1049–1060.  https://doi.org/10.1038/s41593-018-0192-3 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aziz Q, Doré J, Emmanuel A et al (2013) Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterol Motil 25:4–15.  https://doi.org/10.1111/nmo.12046 CrossRefPubMedGoogle Scholar
  7. Babrowski T, Holbrook C, Moss J et al (2012) Pseudomonas aeruginosa virulence expression is directly activated by morphine and is capable of causing lethal gut derived sepsis in mice during chronic morphine administration. Ann Surg 255:386–393.  https://doi.org/10.1097/SLA.0b013e3182331870 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bagot RC, Labonté B, Peña CJ, Nestler EJ (2014) Epigenetic signaling in psychiatric disorders: stress and depression. Dialogues Clin Neurosci 16:281–295PubMedPubMedCentralGoogle Scholar
  9. Bala S, Marcos M, Gattu A et al (2014) Acute binge drinking increases serum endotoxin and bacterial DNA levels in healthy individuals. PLoS One 9:e96864.  https://doi.org/10.1371/journal.pone.0096864 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Balzan S, de Almeida Quadros C, de Cleva R et al (2007) Bacterial translocation: overview of mechanisms and clinical impact. J Gastroenterol Hepatol 22:464–471.  https://doi.org/10.1111/j.1440-1746.2007.04933.x CrossRefPubMedGoogle Scholar
  11. Banerjee S, Sindberg G, Wang F et al (2016) Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol 9:1418–1428.  https://doi.org/10.1038/mi.2016.9 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barengolts E, Green SJ, Eisenberg Y et al (2018) Gut microbiota varies by opioid use, circulating leptin and oxytocin in African American men with diabetes and high burden of chronic disease. PLoS One 13:e0194171.  https://doi.org/10.1371/journal.pone.0194171 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Barker JM, Taylor JR, De Vries TJ, Peters J (2015) Brain-derived neurotrophic factor and addiction: pathological versus therapeutic effects on drug seeking. Brain Res 1628:68–81.  https://doi.org/10.1016/j.brainres.2014.10.058 CrossRefPubMedGoogle Scholar
  14. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157:121–141.  https://doi.org/10.1016/j.cell.2014.03.011 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Benton D, Williams C, Brown A (2007) Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 61:355–361.  https://doi.org/10.1038/sj.ejcn.1602546 CrossRefPubMedGoogle Scholar
  16. Bercik P, Denou E, Collins J et al (2011a) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141:599–609, 609.e1–3.  https://doi.org/10.1053/j.gastro.2011.04.052 CrossRefPubMedGoogle Scholar
  17. Bercik P, Park AJ, Sinclair D et al (2011b) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23:1132–1139.  https://doi.org/10.1111/j.1365-2982.2011.01796.x CrossRefPubMedPubMedCentralGoogle Scholar
  18. Betrapally NS, Gillevet PM, Bajaj JS (2017) Gut microbiome and liver disease. Transl Res 179:49–59.  https://doi.org/10.1016/j.trsl.2016.07.005 CrossRefPubMedGoogle Scholar
  19. Bishehsari F, Magno E, Swanson G et al (2017) Alcohol and gut-derived inflammation. Alcohol Res 38:163–171PubMedPubMedCentralGoogle Scholar
  20. Blednov YA, Benavidez JM, Geil C et al (2011) Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice. Brain Behav Immun 25(Suppl 1):S92–S105.  https://doi.org/10.1016/j.bbi.2011.01.008 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bonaz B, Bazin T, Pellissier S (2018) The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci 12:49.  https://doi.org/10.3389/fnins.2018.00049 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Braniste V, Al-Asmakh M, Kowal C et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:263ra158.  https://doi.org/10.1126/scitranslmed.3009759 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bravo JA, Forsythe P, Chew MV et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108:16050–16055.  https://doi.org/10.1073/pnas.1102999108 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Breit S, Kupferberg A, Rogler G, Hasler G (2018) Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psychiatry 9:44.  https://doi.org/10.3389/fpsyt.2018.00044 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Breslow JM, Monroy MA, Daly JM et al (2011) Morphine, but not trauma, sensitizes to systemic Acinetobacter baumannii infection. J NeuroImmune Pharmacol 6:551–565.  https://doi.org/10.1007/s11481-011-9303-6 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Bull-Otterson L, Feng W, Kirpich I et al (2013) Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PLoS One 8:e53028.  https://doi.org/10.1371/journal.pone.0053028 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Calipari ES, Godino A, Peck EG et al (2018) Granulocyte-colony stimulating factor controls neural and behavioral plasticity in response to cocaine. Nat Commun 9:9.  https://doi.org/10.1038/s41467-017-01881-x CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chiang JYL (2013) Bile acid metabolism and signaling. Compr Physiol 3:1191–1212.  https://doi.org/10.1002/cphy.c120023 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Childs JE, DeLeon J, Nickel E, Kroener S (2017) Vagus nerve stimulation reduces cocaine seeking and alters plasticity in the extinction network. Learn Mem 24:35–42.  https://doi.org/10.1101/lm.043539.116 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cruz C, Meireles M, Silva SM (2017) Chronic ethanol intake induces partial microglial activation that is not reversed by long-term ethanol withdrawal in the rat hippocampal formation. Neurotoxicology 60:107–115.  https://doi.org/10.1016/J.NEURO.2017.04.005 CrossRefPubMedGoogle Scholar
  31. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci.  https://doi.org/10.1038/nrn3346
  32. De Biase LM, Schuebel KE, Fusfeld ZH et al (2017) Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95:341–356.e6.  https://doi.org/10.1016/j.neuron.2017.06.020 CrossRefPubMedPubMedCentralGoogle Scholar
  33. de Timary P, Leclercq S, Stärkel P, Delzenne N (2015) A dysbiotic subpopulation of alcohol-dependent subjects. Gut Microbes 6:388–391.  https://doi.org/10.1080/19490976.2015.1107696 CrossRefPubMedGoogle Scholar
  34. de Timary P, Stärkel P, Delzenne NM, Leclercq S (2017) A role for the peripheral immune system in the development of alcohol use disorders? Neuropharmacology 122:148–160.  https://doi.org/10.1016/J.NEUROPHARM.2017.04.013 CrossRefPubMedGoogle Scholar
  35. Degenhardt L, Baxter AJ, Lee YY et al (2014) The global epidemiology and burden of psychostimulant dependence: findings from the Global Burden of Disease Study 2010. Drug Alcohol Depend 137:36–47.  https://doi.org/10.1016/j.drugalcdep.2013.12.025 CrossRefPubMedGoogle Scholar
  36. DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E (2016) Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 22:1137–1150.  https://doi.org/10.1097/MIB.0000000000000750 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Derrien M, van Hylckama Vlieg JET (2015) Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 23:354–366.  https://doi.org/10.1016/j.tim.2015.03.002 CrossRefPubMedGoogle Scholar
  38. Diaz Heijtz R, Wang S, Anuar F et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052.  https://doi.org/10.1073/pnas.1010529108 CrossRefPubMedGoogle Scholar
  39. Eisenstein TK, Rahim RT, Feng P et al (2006) Effects of opioid tolerance and withdrawal on the immune system. J NeuroImmune Pharmacol 1:237–249.  https://doi.org/10.1007/s11481-006-9019-1 CrossRefPubMedGoogle Scholar
  40. Engen PA, Green SJ, Voigt RM et al (2015) The gastrointestinal microbiome: alcohol effects on the composition of intestinal microbiota. Alcohol Res 37:223–236.  https://doi.org/10.13140/RG.2.1.4342.9285 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Erny D, Hrabě De Angelis AL, Jaitin D et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965–977.  https://doi.org/10.1038/nn.4030 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Faith JJ, Rey FE, O’Donnell D et al (2010) Creating and characterizing communities of human gut microbes in gnotobiotic mice. ISME J 4:1094–1098.  https://doi.org/10.1038/ismej.2010.110 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Faith JJ, Guruge JL, Charbonneau M et al (2013) The long-term stability of the human gut microbiota. Science 341:1237439.  https://doi.org/10.1126/science.1237439 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Fan Y, Ya-E Z, Ji-Dong W et al (2018) Comparison of microbial diversity and composition in jejunum and colon of the alcohol-dependent rats. J Microbiol Biotechnol 28:1883–1895.  https://doi.org/10.4014/jmb.1806.06050 CrossRefPubMedGoogle Scholar
  45. Felipe Palma-Álvarez R, Ros-Cucurull E, Amaro-Hosey K et al (2017) Peripheral levels of BDNF and opiate-use disorder: literature review and update. Rev Neurosci 28:499–508.  https://doi.org/10.1515/revneuro-2016-0078 CrossRefGoogle Scholar
  46. Feng P, Truant AL, Meissler JJ et al (2006) Morphine withdrawal lowers host defense to enteric bacteria: spontaneous sepsis and increased sensitivity to oral Salmonella enterica serovar Typhimurium infection. Infect Immun 74:5221–5226.  https://doi.org/10.1128/IAI.00208-06 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Franzosa EA, Morgan XC, Segata N et al (2014) Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci U S A 111:E2329–E2338.  https://doi.org/10.1073/pnas.1319284111 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gacias M, Gaspari S, Santos P-MG, et al (2016) Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. Elife 5:.  https://doi.org/10.7554/eLife.13442
  49. Gao J, Xu K, Liu H et al (2018) Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol 8:13.  https://doi.org/10.3389/fcimb.2018.00013 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Gibson GR, Beatty ER, Wang X, Cummings JH (1995) Selective stimulation of bifidobacteria in the human volon by oligofructose and inulin. Gastroenterology 108:975–982CrossRefPubMedGoogle Scholar
  51. Glattard E, Welters ID, Lavaux T et al (2010) Endogenous morphine levels are increased in sepsis: a partial implication of neutrophils. PLoS One 5:e8791.  https://doi.org/10.1371/journal.pone.0008791 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gupta NK, Thaker AI, Kanuri N et al (2012) Serum analysis of tryptophan catabolism pathway: correlation with Crohn’s disease activity. Inflamm Bowel Dis 18:1214–1220.  https://doi.org/10.1002/ibd.21849 CrossRefPubMedGoogle Scholar
  53. Han W, Tellez LA, Perkins MH et al (2018) A neural circuit for gut-induced reward in brief. Cell 175:665–678.  https://doi.org/10.1016/j.cell.2018.08.049 CrossRefPubMedGoogle Scholar
  54. Harris RA, Bajo M, Bell RL et al (2017) Genetic and pharmacologic manipulation of TLR4 has minimal impact on ethanol consumption in rodents. J Neurosci 37:1139–1155.  https://doi.org/10.1523/JNEUROSCI.2002-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Heller EA, Hamilton PJ, Burek DD et al (2016) Targeted epigenetic remodeling of the Cdk5 gene in nucleus accumbens regulates cocaine- and stress-evoked behavior. J Neurosci 36:4690–4697.  https://doi.org/10.1523/JNEUROSCI.0013-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hilburger ME, Adler MW, Truant AL et al (1997) Morphine induces sepsis in mice. J Infect Dis 176:183–188Google Scholar
  57. Hillemacher T, Bachmann O, Kahl KG, Frieling H (2018) Alcohol, microbiome, and their effect on psychiatric disorders.  https://doi.org/10.1016/j.pnpbp.2018.04.015
  58. Hoban AE, Stilling RM, Ryan FJ et al (2016) Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry 6:e774–e774.  https://doi.org/10.1038/tp.2016.42 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Hofford RS, Russo SJ, Kiraly DD (2018) Neuroimmune mechanisms of psychostimulant and opioid use disorders. Eur J Neurosci.  https://doi.org/10.1111/ejn.14143
  60. Jadhav KS, Peterson VL, Halfon O et al (2018) Gut microbiome correlates with altered striatal dopamine receptor expression in a model of compulsive alcohol seeking. Neuropharmacology 141:249–259.  https://doi.org/10.1016/J.NEUROPHARM.2018.08.026 CrossRefPubMedGoogle Scholar
  61. Joseph J, Depp C, Shih PB et al (2017) Modified Mediterranean diet for enrichment of short chain fatty acids: potential adjunctive therapeutic to target immune and metabolic dysfunction in schizophrenia? Front Neurosci 11:155.  https://doi.org/10.3389/fnins.2017.00155 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kang M, Mischel RA, Bhave S et al (2017) The effect of gut microbiome on tolerance to morphine mediated antinociception in mice. Sci Rep 7:1–17.  https://doi.org/10.1038/srep42658 CrossRefGoogle Scholar
  63. Kato-Kataoka A, Nishida K, Takada M et al (2016) Fermented milk containing Lactobacillus casei strain Shirota prevents the onset of physical symptoms in medical students under academic examination stress. Benefic Microbes 7:153–156.  https://doi.org/10.3920/BM2015.0100 CrossRefGoogle Scholar
  64. Kelly D, Conway S, Aminov R (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26:326–333.  https://doi.org/10.1016/j.it.2005.04.008 CrossRefPubMedGoogle Scholar
  65. Kelly JR, Kennedy PJ, Cryan JF et al (2015) Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 9:392.  https://doi.org/10.3389/fncel.2015.00392 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Kennedy PJ, Feng J, Robison AJ et al (2013) Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nat Neurosci 16:434–440.  https://doi.org/10.1038/nn.3354 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Keshavarzian A, Farhadi A, Forsyth CB et al (2009) Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J Hepatol 50:538–547.  https://doi.org/10.1016/j.jhep.2008.10.028 CrossRefPubMedGoogle Scholar
  68. Kiraly DD, Walker DM, Calipari ES et al (2016) Alterations of the host microbiome affect behavioral responses to cocaine. Sci Rep 6:1–12.  https://doi.org/10.1038/srep35455 CrossRefGoogle Scholar
  69. Kirpich IA, Solovieva NV, Leikhter SN et al (2008) Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol 42:675–682.  https://doi.org/10.1016/j.alcohol.2008.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345.  https://doi.org/10.1016/j.cell.2016.05.041 CrossRefPubMedGoogle Scholar
  71. Krishnan S, Ding Y, Saedi N et al (2018) Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep 23:1099–1111.  https://doi.org/10.1016/J.CELREP.2018.03.109 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kyzar EJ, Pandey SC (2015) Molecular mechanisms of synaptic remodeling in alcoholism. Neurosci Lett 601:11–19.  https://doi.org/10.1016/j.neulet.2015.01.051 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Lacagnina MJ, Kopec AM, Cox SS et al (2017) Opioid self-administration is attenuated by early-life experience and gene therapy for anti-inflammatory IL-10 in the nucleus accumbens of male rats. Neuropsychopharmacology 42:2128–2140.  https://doi.org/10.1038/npp.2017.82 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lainiola M, Linden A-M (2017) Alcohol intake in two different mouse drinking models after recovery from the lipopolysaccharide-induced sickness reaction. Alcohol 65:1–10.  https://doi.org/10.1016/J.ALCOHOL.2017.06.002 CrossRefPubMedGoogle Scholar
  75. Lal S, Kirkup AJ, Brunsden AM et al (2001) Vagal afferent responses to fatty acids of different chain length in the rat. Am J Physiol Gastrointest Liver Physiol 281:G907–G915.  https://doi.org/10.1152/ajpgi.2001.281.4.G907 CrossRefPubMedGoogle Scholar
  76. Laughlin RS, Musch MW, Hollbrook CJ et al (2000) The key role of Pseudomonas aeruginosa PA-I lectin on experimental gut-derived sepsis. Ann Surg 232:133–142CrossRefPubMedPubMedCentralGoogle Scholar
  77. Leclercq S, Cani PD, Neyrinck AM, et al (2012) Role of intestinal permeability and inflammation in the biological and behavioral control of alcohol-dependent subjects. 26:911–918.  https://doi.org/10.1016/j.bbi.2012.04.001
  78. Leclercq S, De Saeger C, Delzenne N et al (2014a) Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence. Biol Psychiatry 76:725–733.  https://doi.org/10.1016/j.biopsych.2014.02.003 CrossRefPubMedGoogle Scholar
  79. Leclercq S, Matamoros S, Cani PD et al (2014b) Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci 111:E4485–E4493.  https://doi.org/10.1073/pnas.1415174111 CrossRefPubMedGoogle Scholar
  80. Lee K, Vuong HE, Nusbaum DJ et al (2018) The gut microbiota mediates reward and sensory responses associated with regimen-selective morphine dependence. Neuropsychopharmacology 1.  https://doi.org/10.1038/s41386-018-0211-9
  81. Lefebvre P, Cariou B, Lien F, et al (2009) Role of bile acids and bile acid receptors in metabolic regulation.  https://doi.org/10.1152/physrev.00010.2008.-The
  82. Levy M, Thaiss CA, Elinav E (2016) Metabolites: messengers between the microbiota and the immune system. Genes Dev 30:1589–1597.  https://doi.org/10.1101/gad.284091.116 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Lewitus GM, Konefal SC, Greenhalgh AD et al (2016) Microglial TNF-α suppresses cocaine-induced plasticity and behavioral sensitization. Neuron 90:483–491.  https://doi.org/10.1016/j.neuron.2016.03.030 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Li X, Wolf ME (2015) Multiple faces of BDNF in cocaine addiction. Behav Brain Res 279:240–254.  https://doi.org/10.1016/j.bbr.2014.11.018 CrossRefPubMedGoogle Scholar
  85. Li Z, Quan G, Jiang X et al (2018) Effects of metabolites derived from gut microbiota and hosts on pathogens. Front Cell Infect Microbiol 8:314.  https://doi.org/10.3389/fcimb.2018.00314 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Maes M, Yirmyia R, Noraberg J et al (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53.  https://doi.org/10.1007/s11011-008-9118-1 CrossRefPubMedGoogle Scholar
  87. Malvaez M, Sanchis-Segura C, Vo D et al (2010) Modulation of chromatin modification facilitates extinction of cocaine-induced conditioned place preference. Biol Psychiatry 67:36–43.  https://doi.org/10.1016/j.biopsych.2009.07.032 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Meng J, Yu H, Ma J et al (2013) Morphine induces bacterial translocation in mice by compromising intestinal barrier function in a TLR-dependent manner. PLoS One 8:e54040.  https://doi.org/10.1371/journal.pone.0054040 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Meng J, Banerjee S, Li D et al (2015a) Opioid exacerbation of gram-positive sepsis, induced by gut microbial modulation, is rescued by IL-17A neutralization. Sci Rep 5:10918.  https://doi.org/10.1038/srep10918 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Meng J, Sindberg GM, Roy S (2015b) Disruption of gut homeostasis by opioids accelerates HIV disease progression. Front Microbiol 6:643.  https://doi.org/10.3389/fmicb.2015.00643 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Messaoudi M, Lalonde R, Violle N et al (2011a) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105:755–764.  https://doi.org/10.1017/S0007114510004319 CrossRefPubMedGoogle Scholar
  92. Messaoudi M, Violle N, Bisson J-F et al (2011b) Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2:256–261.  https://doi.org/10.4161/gmic.2.4.16108 CrossRefPubMedGoogle Scholar
  93. Miguel-Hidalgo JJ (2009) The role of glial cells in drug abuse. Curr Drug Abuse Rev 2:76–82CrossRefPubMedPubMedCentralGoogle Scholar
  94. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7:189–200.  https://doi.org/10.1080/19490976.2015.1134082 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Mortha A, Chudnovskiy A, Hashimoto D et al (2014) Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343:1249288.  https://doi.org/10.1126/science.1249288 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Murray CJL, Vos T, Lozano R et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet (London, England) 380:2197–2223.  https://doi.org/10.1016/S0140-6736(12)61689-4 CrossRefGoogle Scholar
  97. Mutlu E, Keshavarzian A, Engen P et al (2009) Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res 33:1836–1846.  https://doi.org/10.1111/j.1530-0277.2009.01022.x CrossRefPubMedPubMedCentralGoogle Scholar
  98. Mutlu EA, Gillevet PM, Rangwala H, et al (2012) Colonic microbiome is altered in alcoholism. 302:.  https://doi.org/10.1152/ajpgi.00380.2011
  99. Ning T, Gong X, Xie L, Ma B (2017) Gut microbiota analysis in rats with methamphetamine-induced conditioned place preference. Front Microbiol 8:1–9.  https://doi.org/10.3389/fmicb.2017.01620 CrossRefGoogle Scholar
  100. Niwa M, Nitta A, Yamada Y et al (2007) Tumor necrosis factor-α and its inducer inhibit morphine-induced rewarding effects and sensitization. Biol Psychiatry 62:658–668.  https://doi.org/10.1016/J.BIOPSYCH.2006.10.009 CrossRefPubMedGoogle Scholar
  101. Northcutt AL, Hutchinson MR, Wang X et al (2015) DAT isn’t all that: cocaine reward and reinforcement require toll-like receptor 4 signaling. Mol Psychiatry 20:1525–1537.  https://doi.org/10.1038/mp.2014.177 CrossRefPubMedPubMedCentralGoogle Scholar
  102. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693.  https://doi.org/10.1038/sj.embor.7400731 CrossRefPubMedPubMedCentralGoogle Scholar
  103. O’Mahony SM, Clarke G, Borre YE, et al (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277Google Scholar
  104. Ocasio FM, Jiang Y, House SD, Chang SL (2004) Chronic morphine accelerates the progression of lipopolysaccharide-induced sepsis to septic shock. J Neuroimmunol 149:90–100.  https://doi.org/10.1016/j.jneuroim.2003.12.016 CrossRefPubMedGoogle Scholar
  105. Pan W, Stone KP, Hsuchou H et al (2011) Cytokine signaling modulates blood-brain barrier function. Curr Pharm Des 17:3729–3740CrossRefPubMedPubMedCentralGoogle Scholar
  106. Pandey SC (2016) A critical role of brain-derived neurotrophic factor in alcohol consumption. Biol Psychiatry 79:427–429.  https://doi.org/10.1016/j.biopsych.2015.12.020 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Parthasarathy G, Chen J, Chen X et al (2016) Relationship between microbiota of the colonic mucosa vs feces and symptoms, colonic transit, and methane production in female patients with chronic constipation. Gastroenterology 150:367–79.e1.  https://doi.org/10.1053/j.gastro.2015.10.005 CrossRefPubMedGoogle Scholar
  108. Peña CJ, Bagot RC, Labonté B, Nestler EJ (2014) Epigenetic signaling in psychiatric disorders. J Mol Biol 426:3389–3412.  https://doi.org/10.1016/j.jmb.2014.03.016 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Peterson VL, Jury NJ, Cabrera-Rubio R et al (2017) Drunk bugs: chronic vapour alcohol exposure induces marked changes in the gut microbiome in mice. Behav Brain Res 323:172–176.  https://doi.org/10.1016/j.bbr.2017.01.049 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Rao R (2009) Endotoxemia and gut barrier dysfunction in alcoholic liver disease. Hepatology 50:638–644.  https://doi.org/10.1002/hep.23009 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Rao RK, Seth A, Sheth P (2004) Recent advances in alcoholic liver disease I. Role of intestinal permeability and endotoxemia in alcoholic liver disease  https://doi.org/10.1152/ajpgi.00006.2004.-A
  112. Raybould HE (2010) Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci 153:41–46.  https://doi.org/10.1016/j.autneu.2009.07.007 CrossRefPubMedGoogle Scholar
  113. Reddy IA, Smith NK, Erreger K et al (2018) Bile diversion, a bariatric surgery, and bile acid signaling reduce central cocaine reward. PLoS Biol 16:e2006682.  https://doi.org/10.1371/journal.pbio.2006682 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Reigstad CS, Salmonson CE, Rainey JF, et al (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29:.  https://doi.org/10.1096/fj.14-259598
  115. Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6:306–314.  https://doi.org/10.1038/nrgastro.2009.35 CrossRefPubMedGoogle Scholar
  116. Riottot M, Sacquet E (1985) Increase in the ileal absorption rate of sodium taurocholate in germ-free or conventional rats given an amylomaize-starch diet. Br J Nutr 53:307–310CrossRefPubMedGoogle Scholar
  117. Roager HM, Licht TR (2018) Microbial tryptophan catabolites in health and disease. Nat Commun 9:3294.  https://doi.org/10.1038/s41467-018-05470-4 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Rogge GA, Wood MA (2013) The role of histone acetylation in cocaine-induced neural plasticity and behavior. Neuropsychopharmacology 38:94–110.  https://doi.org/10.1038/npp.2012.154 CrossRefPubMedGoogle Scholar
  119. Romieu P, Host L, Gobaille S et al (2008) Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats. J Neurosci 28:9342–9348.  https://doi.org/10.1523/JNEUROSCI.0379-08.2008 CrossRefPubMedGoogle Scholar
  120. Romieu P, Deschatrettes E, Host L et al (2011) The inhibition of histone deacetylases reduces the reinstatement of cocaine-seeking behavior in rats. Curr Neuropharmacol 9:21–25.  https://doi.org/10.2174/157015911795017317 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Rothhammer V, Mascanfroni ID, Bunse L et al (2016) Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 22:586–597.  https://doi.org/10.1038/nm.4106 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Samuelson DR, Shellito JE, Maffei VJ et al (2017) Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae. PLoS Pathog 13:e1006426.  https://doi.org/10.1371/journal.ppat.1006426 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Sandhu KV, Sherwin E, Schellekens H et al (2017) Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res 179:223–244.  https://doi.org/10.1016/j.trsl.2016.10.002 CrossRefPubMedGoogle Scholar
  124. Sarkar A, Lehto SM, Harty S et al (2016) Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci 39:763–781.  https://doi.org/10.1016/j.tins.2016.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Sayin SI, Wahlström A, Felin J et al (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of Tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17:225–235.  https://doi.org/10.1016/j.cmet.2013.01.003 CrossRefPubMedGoogle Scholar
  126. Schafer DP, Stevens B (2013) Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Curr Opin Neurobiol 23:1034–1040.  https://doi.org/10.1016/j.conb.2013.09.012 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Schafer DP, Stevens B (2015) Microglia function in central nervous system development and plasticity. Cold Spring Harb Perspect Biol 7:a020545.  https://doi.org/10.1101/cshperspect.a020545 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Schirmer M, Smeekens SP, Vlamakis H et al (2016) Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167:1125–1136.e8.  https://doi.org/10.1016/j.cell.2016.10.020 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Schnabl B, Brenner DA (2014) Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146:1513–1524.  https://doi.org/10.1053/j.gastro.2014.01.020 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Scorza C, Piccini C, Busi MM et al (2019) Alterations in the gut microbiota of rats chronically exposed to volatilized cocaine and its active adulterants caffeine and phenacetin. Neurotox Res 35:111–121.  https://doi.org/10.1007/s12640-018-9936-9 CrossRefPubMedGoogle Scholar
  131. Shorter D, Domingo CB, Kosten TR (2015) Emerging drugs for the treatment of cocaine use disorder: a review of neurobiological targets and pharmacotherapy. Expert Opin Emerg Drugs 20:15–29.  https://doi.org/10.1517/14728214.2015.985203 CrossRefPubMedGoogle Scholar
  132. Sindberg GM, Callen SE, Banerjee S et al (2018) Morphine potentiates dysbiotic microbial and metabolic shifts in acute SIV infection. J NeuroImmune Pharmacol.  https://doi.org/10.1007/s11481-018-9805-6
  133. Singh RK, Chang H-W, Yan D et al (2017) Influence of diet on the gut microbiome and implications for human health. J Transl Med 15:73.  https://doi.org/10.1186/s12967-017-1175-y CrossRefPubMedPubMedCentralGoogle Scholar
  134. Skosnik PD, Cortes-Briones JA (2016) Targeting the ecology within: the role of the gut-brain axis and human microbiota in drug addiction. Med Hypotheses 93:77–80.  https://doi.org/10.1016/j.mehy.2016.05.021 CrossRefPubMedGoogle Scholar
  135. Slykerman RF, Hood F, Wickens K et al (2017) Effect of lactobacillus rhamnosus HN001 in pregnancy on postpartum symptoms of depression and anxiety: a randomised double-blind placebo-controlled trial. EBioMedicine 24:159–165.  https://doi.org/10.1016/j.ebiom.2017.09.013 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Smith TH, Grider JR, Dewey WL, Akbarali HI (2012) Morphine decreases enteric neuron excitability via inhibition of sodium channels. PLoS One 7:e45251.  https://doi.org/10.1371/journal.pone.0045251 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573.  https://doi.org/10.1126/science.1241165 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Sofia MA, Ciorba MA, Meckel K et al (2018) Tryptophan metabolism through the kynurenine pathway is associated with endoscopic inflammation in ulcerative colitis. Inflamm Bowel Dis 24.  https://doi.org/10.1093/ibd/izy103
  139. Soyka M, Müller CA (2017) Pharmacotherapy of alcoholism—an update on approved and off-label medications. Expert Opin Pharmacother 18:1187–1199.  https://doi.org/10.1080/14656566.2017.1349098 CrossRefPubMedGoogle Scholar
  140. Staels B, Fonseca VA (2009) Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care 32(Suppl 2):S237–S245.  https://doi.org/10.2337/dc09-S355 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Stain-Texier F, Sandouk P, Scherrmann J-M (1998) Intestinal absorption and stability of morphine 6-glucuronide in different physiological compartments of the rat. Drug Metab Dispos 26:383–387PubMedGoogle Scholar
  142. Steenbergen L, Sellaro R, van Hemert S et al (2015) A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun 48:258–264.  https://doi.org/10.1016/J.BBI.2015.04.003 CrossRefPubMedGoogle Scholar
  143. Stilling RM, Dinan TG, Cryan JF (2014) Microbial genes, brain & behaviour—epigenetic regulation of the gut-brain axis. Genes, Brain Behav 13:69–86.  https://doi.org/10.1111/gbb.12109 CrossRefGoogle Scholar
  144. Subedi L, Huang H, Pant A et al (2017) Plasma brain-derived neurotrophic factor levels in newborn infants with neonatal abstinence syndrome. Front Pediatr 5:238.  https://doi.org/10.3389/fped.2017.00238 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Substance Abuse and Mental Health Services Administration (2016) Facing addiction in America: the surgeon general’s report on alcohol, drugs, and health. In: U.S. Department of Health and Human Services (HHS) O of the SG (ed) Facing Addiction in America: The Surgeon General’s Report on Alcohol, Drugs, and Health. HHS, Washington (DC), p ch. 6Google Scholar
  146. Sudo N, Chida Y, Aiba Y et al (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558:263–275.  https://doi.org/10.1113/jphysiol.2004.063388 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Sun J, Chang EB (2014) Exploring gut microbes in human health and disease: pushing the envelope. Genes Dis 1:132–139.  https://doi.org/10.1016/j.gendis.2014.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Sun J, Wang F, Hong G et al (2016) Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress. Neurosci Lett 618:159–166CrossRefPubMedGoogle Scholar
  149. Temko JE, Bouhlal S, Farokhnia M et al (2017) The microbiota, the gut and the brain in eating and alcohol use disorders: a “ménage à trois”. Alcohol Alcohol 52:403–413.  https://doi.org/10.1093/alcalc/agx024 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Thion MS, Low D, Silvin A et al (2018) Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172:500–516.e16.  https://doi.org/10.1016/j.cell.2017.11.042 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Thomas DM, Kuhn DM (2005) Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine. J Neurochem 92:790–797.  https://doi.org/10.1111/j.1471-4159.2004.02906.x CrossRefPubMedGoogle Scholar
  152. Thomas DM, Dowgiert J, Geddes TJ et al (2004a) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci Lett 367:349–354.  https://doi.org/10.1016/J.NEULET.2004.06.065 CrossRefPubMedGoogle Scholar
  153. Thomas DM, Walker PD, Benjamins JA et al (2004b) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 311:1–7.  https://doi.org/10.1124/jpet.104.070961 CrossRefPubMedGoogle Scholar
  154. Tripathi A, Debelius J, Brenner DA et al (2018) The gut–liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15:397–411.  https://doi.org/10.1038/s41575-018-0011-z CrossRefPubMedPubMedCentralGoogle Scholar
  155. Turnbaugh PJ, Ridaura VK, Faith JJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14.  https://doi.org/10.1126/scitranslmed.3000322 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Umesaki Y (2014) Use of gnotobiotic mice to identify and characterize key microbes responsible for the development of the intestinal immune system. Proc Jpn Acad Ser B Phys Biol Sci 90:313–332.  https://doi.org/10.2183/PJAB.90.313 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Ursell LK, Haiser HJ, Van Treuren W et al (2014) The intestinal metabolome: an intersection between microbiota and host. Gastroenterology 146:1470–1476.  https://doi.org/10.1053/j.gastro.2014.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  158. van de Wouw M, Schellekens H, Dinan TG, Cryan JF (2017) Microbiota-gut-brain axis: modulator of host metabolism and appetite. J Nutr 147:727–745.  https://doi.org/10.3945/jn.116.240481 CrossRefPubMedGoogle Scholar
  159. Vécsei L, Szalárdy L, Fülöp F, Toldi J (2013) Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov 12:64–82.  https://doi.org/10.1038/nrd3793 CrossRefPubMedGoogle Scholar
  160. Verdam FJ, Fuentes S, De Jonge C et al (2013) Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity 21:607–615.  https://doi.org/10.1002/oby.20466 CrossRefGoogle Scholar
  161. Vincent C, Miller MA, Edens TJ et al (2016) Bloom and bust: intestinal microbiota dynamics in response to hospital exposures and Clostridium difficile colonization or infection. Microbiome 4:12.  https://doi.org/10.1186/s40168-016-0156-3 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Volpe GE, Ward H, Mwamburi M et al (2014) Associations of cocaine use and HIV infection with the intestinal microbiota, microbial translocation, and inflammation. J Stud Alcohol Drugs 75:347–357CrossRefPubMedPubMedCentralGoogle Scholar
  163. Waclawiková B, El Aidy S, Waclawiková B, El Aidy S (2018) Role of microbiota and tryptophan metabolites in the remote effect of intestinal inflammation on brain and depression. Pharmaceuticals 11:63.  https://doi.org/10.3390/ph11030063 CrossRefPubMedCentralGoogle Scholar
  164. Wahlström A, Sayin SI, Marschall H-U, Bäckhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on Host metabolism. Cell Metab 24:41–50.  https://doi.org/10.1016/j.cmet.2016.05.005 CrossRefPubMedGoogle Scholar
  165. Wang F-B, Powley TL (2007) Vagal innervation of intestines: afferent pathways mapped with new en bloc horseradish peroxidase adaptation. Cell Tissue Res 329:221–230.  https://doi.org/10.1007/s00441-007-0413-7 CrossRefPubMedGoogle Scholar
  166. Wang F, Roy S (2017) Gut homeostasis, microbial dysbiosis, and opioids. Toxicol Pathol 45:150–156.  https://doi.org/10.1177/0192623316679898 CrossRefPubMedGoogle Scholar
  167. Wang F, Meng J, Zhang L et al (2018a) Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model. Sci Rep 8:3596.  https://doi.org/10.1038/s41598-018-21915-8 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Wang G, Liu Q, Guo L et al (2018b) Gut microbiota and relevant metabolites analysis in alcohol dependent mice. Front Microbiol 9:1874.  https://doi.org/10.3389/fmicb.2018.01874 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Wong M-L, Inserra A, Lewis MD et al (2016) Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry 21:797–805.  https://doi.org/10.1038/mp.2016.46 CrossRefPubMedPubMedCentralGoogle Scholar
  170. Wu H, Esteve E, Tremaroli V et al (2017) Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23:850–858.  https://doi.org/10.1038/nm.4345 CrossRefPubMedGoogle Scholar
  171. Xiao H, Ge C, Feng G et al (2018) Gut microbiota modulates alcohol withdrawal-induced anxiety in mice. Toxicol Lett 287:23–30.  https://doi.org/10.1016/J.TOXLET.2018.01.021 CrossRefPubMedGoogle Scholar
  172. Xu Y, Xie Z, Wang H et al (2017) Bacterial diversity of intestinal microbiota in patients with substance use disorders revealed by 16S rRNA gene deep sequencing. Sci Rep 7:1–9.  https://doi.org/10.1038/s41598-017-03706-9 CrossRefGoogle Scholar
  173. Xu Z, Wang C, Dong X et al (2018) Chronic alcohol exposure induced gut microbiota dysbiosis and its correlations with neuropsychic behaviors and brain BDNF/Gabra1 changes in mice. BioFactors.  https://doi.org/10.1002/biof.1469
  174. Yan AW, Fouts DE, Brandl J et al (2011) Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 53:96–105.  https://doi.org/10.1002/hep.24018 CrossRefPubMedGoogle Scholar
  175. Yano JM, Yu K, Donaldson GP, et al (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:.  https://doi.org/10.1016/j.cell.2015.02.047
  176. Yarlagadda A, Alfson E, Clayton AH (2009) The blood brain barrier and the role of cytokines in neuropsychiatry. Psychiatry (Edgmont) 6:18–22Google Scholar
  177. Zallar LJ, Beurmann S, Tunstall BJ et al (2018) Ghrelin receptor deletion reduces binge-like alcohol drinking in rats. J Neuroendocrinol:e12663.  https://doi.org/10.1111/jne.12663
  178. Zhang L, Kitaichi K, Fujimoto Y et al (2006) Protective effects of minocycline on behavioral changes and neurotoxicity in mice after administration of methamphetamine. Prog Neuro-Psychopharmacol Biol Psychiatry 30:1381–1393.  https://doi.org/10.1016/J.PNPBP.2006.05.015 CrossRefGoogle Scholar
  179. Zhang D, Chen G, Manwani D et al (2015) Neutrophil ageing is regulated by the microbiome. Nature 525:528–532.  https://doi.org/10.1038/nature15367 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Zhang R, Meng J, Lian Q et al (2018) Prescription opioids are associated with higher mortality in patients diagnosed with sepsis: a retrospective cohort study using electronic health records. PLoS One 13:e0190362.  https://doi.org/10.1371/journal.pone.0190362 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Zheng P, Zeng B, Zhou C et al (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21:786–796.  https://doi.org/10.1038/mp.2016.44 CrossRefPubMedGoogle Scholar
  182. Zhernakova A, Kurilshikov A, Bonder MJ et al (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352:565–569.  https://doi.org/10.1126/science.aad3369 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Zhu L, Liu W, Alkhouri R et al (2014) Structural changes in the gut microbiome of constipated patients. Physiol Genomics 46:679–686.  https://doi.org/10.1152/physiolgenomics.00082.2014 CrossRefPubMedGoogle Scholar
  184. Zuo Z, Fan H, Tang X et al (2017) Effect of different treatments and alcohol addiction on gut microbiota in minimal hepatic encephalopathy patients. Exp Ther Med.  https://doi.org/10.3892/etm.2017.5141

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nash Family Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations