Advertisement

Psychopharmacology

, Volume 236, Issue 5, pp 1559–1571 | Cite as

The microbiome and cognitive aging: a review of mechanisms

  • Mrudhula Komanduri
  • Shakuntla Gondalia
  • Andrew Scholey
  • Con StoughEmail author
Review

Abstract

Gut microbiota plays an intrinsic role in communication between the gut and the brain and is capable of influencing the host brain by producing neurotransmitters and neurotrophins, the modulation of inflammatory processes amongst other key mechanisms. Increased age is also associated with changes in these key biological processes and impairments in a range of cognitive processes. We hypothesise several mechanisms in which gut microbiota may modulate changes in cognitive function with age. In this review, we discuss issues related to the measurement of cognition in the elderly and in particular outline a standardised model of cognition that could be utilised to better understand cognitive outcomes in future studies examining the relationship between gut microbiota and cognition in the elderly. We then review biological processes such as oxidative stress and inflammation which are related to cognitive changes with age and which are also influenced by our gut microbiota. Finally, we outline other potential mechanisms by which the gut microbiota may influence cognition.

Keywords

Gut microbiota Microbiota Cognitive decline Inflammation Oxidative stress ROS 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J (2014) The placenta harbors a unique microbiome. Sci Transl Med 6(237):237ra265.  https://doi.org/10.1126/scitranslmed.3008599 CrossRefGoogle Scholar
  2. Ackerman PL, Lohman DF (2006) Individual differences in cognitive functions. In: Handbook of educational psychology. Lawrence Erlbaum Associates Publishers, Mahwah, NJ, pp 139–161Google Scholar
  3. Agans R, Rigsbee L, Kenche H, Michail S, Khamis HJ, Paliy O (2011) Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol Ecol 77(2):404–412.  https://doi.org/10.1111/j.1574-6941.2011.01120.x Aging and aged care. (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  4. Allen Andrew P, Dinan Timothy G, Clarke G, Cryan John F (2017) A psychology of the human brain–gut–microbiome axis. Soc Personal Psychol Compass 11(4):e12309.  https://doi.org/10.1111/spc3.12309 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Arfanakis K, Fleischman DA, Grisot G, Barth CM, Varentsova A, Morris MC, Barnes LL, Bennett DA (2013) Systemic inflammation in non-demented elderly human subjects: brain microstructure and cognition. PLoS One 8(8):e73107.  https://doi.org/10.1371/journal.pone.0073107 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arlinger S, Lunner T, Lyxell B, Kathleen Pichora-Fuller M (2009) The emergence of cognitive hearing science. Scand J Psychol 50(5):371–384.  https://doi.org/10.1111/j.1467-9450.2009.00753.x CrossRefPubMedGoogle Scholar
  7. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, … Bork P (2011) Enterotypes of the human gut microbiome. Nature 473:174-180.  https://doi.org/10.1038/nature09944. Australia’s health 2018. (2018). Retrieved from https://www.nature.com/articles/nature09944#supplementary-information CrossRefGoogle Scholar
  8. Barrientos RM, Frank MG, Hein AM, Higgins EA, Watkins LR, Rudy JW, Maier SF (2009) Time course of hippocampal IL-1 β and memory consolidation impairments in aging rats following peripheral infection. Brain Behav Immun 23(1):46–54.  https://doi.org/10.1016/j.bbi.2008.07.002 CrossRefPubMedGoogle Scholar
  9. Belblidia H, Leger M, Abdelmalek A, Quiedeville A, Calocer F, Boulouard M, Jozet-Alves C, Freret T, Schumann-Bard P (2018) Characterizing age-related decline of recognition memory and brain activation profile in mice. Exp Gerontol 106:222–231.  https://doi.org/10.1016/j.exger.2018.03.006 CrossRefPubMedGoogle Scholar
  10. Bercik P, Collins SM, Verdu EF (2012) Microbes and the gut-brain axis. Neurogastroenterol Motil 24(5):405–413.  https://doi.org/10.1111/j.1365-2982.2012.01906.x CrossRefPubMedGoogle Scholar
  11. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkïla J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5(5):e10667.  https://doi.org/10.1371/journal.pone.0010667 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B (2004) How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell 3(4):169–176.  https://doi.org/10.1111/j.1474-9728.2004.00101.x CrossRefPubMedGoogle Scholar
  13. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, D. Lieber A, Wu F, Perez-Perez GI, Chen Y, Schweizer W, Zheng X, Contreras M, Dominguez-Bello MG, Blaser MJ (2016) Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8(343):343ra382.  https://doi.org/10.1126/scitranslmed.aad7121 CrossRefGoogle Scholar
  14. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, Korecka A, Bakocevic N, Ng LG, Kundu P, Gulyás B, Halldin C, Hultenby K, Nilsson H, Hebert H, Volpe BT, Diamond B, Pettersson S (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6(263):263ra158CrossRefGoogle Scholar
  15. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 108(38):16050–16055.  https://doi.org/10.1073/pnas.1102999108 CrossRefPubMedGoogle Scholar
  16. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001) In-vivo measurement of activated microglia in dementia. Lancet 358(9280):461–467.  https://doi.org/10.1016/S0140-6736(01)05625-2 CrossRefPubMedGoogle Scholar
  17. Camfield, D.A., Nolidin, K., Savage, K., Timmer, J., Croft, K., Simpson, T., Downey, L., Scholey, A., Pipingas, A., Deleuil, S., & Stough, C. (In press). Association between decreased oxidative stress and decreased psychomotor speed in a sample of healthy older adults. Reactive Oxygen SeriesGoogle Scholar
  18. Cao L, Tan L, Wang H-F, Jiang T, Zhu X-C, Lu H, Tan MS, Yu J-T (2016) Dietary patterns and risk of dementia: a systematic review and meta-analysis of cohort studies. Mol Neurobiol 53(9):6144–6154.  https://doi.org/10.1007/s12035-015-9516-4 CrossRefPubMedGoogle Scholar
  19. Chakravarty S, Herkenham M (2005) Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 25(7):1788CrossRefGoogle Scholar
  20. Chen J, Buchanan JB, Sparkman NL, Godbout JP, Freund GG, Johnson RW (2008) Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system. Brain Behav Immun 22(3):301–311.  https://doi.org/10.1016/j.bbi.2007.08.014 CrossRefPubMedGoogle Scholar
  21. Ching Kuang C (1991) Vitamin E and oxidative stress. Free Radic Biol Med 11(2):215–232.  https://doi.org/10.1016/0891-5849(91)90174-2 CrossRefGoogle Scholar
  22. Chitu V, Gokhan S, Nandi S, Mehler MF, Stanley ER (2016) Emerging roles for CSF-1 receptor and its ligands in the nervous system. Trends Neurosci 39(6):378–393.  https://doi.org/10.1016/j.tins.2016.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Christensen H, Kumar R (2003) Cognitive changes and the ageing. In: Sachdve PS (ed) The Ageing Brain. Swets and Zeitlinger, Lisse, pp 75–96Google Scholar
  24. Christensen H, Mackinnon AJ, Korten AE, Jorm AF, Henderson AS, Jacomb P, Rodgers B (1999) An analysis of diversity in the cognitive performance of elderly community dwellers: individual differences in change scores as a function of age. Psychol Aging 14(3):365–379.  https://doi.org/10.1037/0882-7974.14.3.365 CrossRefPubMedGoogle Scholar
  25. Christensen HR, Frøkiær H, Pestka JJ (2002) Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 168(1):171CrossRefGoogle Scholar
  26. Chunchai T, Thunapong W, Yasom S, Wanchai K, Eaimworawuthikul S, Metzler G, Lungkaphin A, Pongchaidecha A, Sirilun S, Chaiyasut C, Pratchayasakul W, Thiennimitr P, Chattipakorn N, Chattipakorn SC (2018) Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. J Neuroinflammation 15:11.  https://doi.org/10.1186/s12974-018-1055-2 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O'Connor M, Harnedy N, O'Connor K, Henry C, O'Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O'Toole PW (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci 108(Supplement 1):4586–4591CrossRefGoogle Scholar
  28. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HMB, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184.  https://doi.org/10.1038/nature11319. https://www.nature.com/articles/nature11319#supplementary-information CrossRefPubMedGoogle Scholar
  29. Clark A, Mach N (2017) The crosstalk between the gut microbiota and mitochondria during exercise. Front Physiol 8:319.  https://doi.org/10.3389/fphys.2017.00319 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735.  https://doi.org/10.1038/nrmicro2876 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO (2009) A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A 106(46):19256–19261.  https://doi.org/10.1073/pnas.0812681106 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Cortese GP, Barrientos RM, Maier SF, Patterson SL (2011) Aging and a peripheral immune challenge interact to reduce mBDNF and activation of TrkB, PLCγ1, and ERK in hippocampal synaptoneurosomes. J Neurosci 31(11):4274–4279.  https://doi.org/10.1523/JNEUROSCI.5818-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Crack Peter J, Bray Paula J (2007) Toll-like receptors in the brain and their potential roles in neuropathology. Immunol Cell Biol 85(6):476–480.  https://doi.org/10.1038/sj.icb.7100103 CrossRefPubMedGoogle Scholar
  34. Deak F, Sonntag WE (2012) Aging, synaptic dysfunction, and insulin-like growth factor (IGF)-1. J Gerontol A 67A(6):611–625.  https://doi.org/10.1093/gerona/gls118 CrossRefGoogle Scholar
  35. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG (2008) The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43(2):164–174.  https://doi.org/10.1016/j.jpsychires.2008.03.009 CrossRefGoogle Scholar
  36. Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P (1995) Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 16(3):285–298.  https://doi.org/10.1016/0197-4580(95)00013-5 CrossRefPubMedGoogle Scholar
  37. Dodge JC, Haidet AM, Yang W, Passini MA, Hester M, Clarke J, Roskelley EM, Treleaven CM, Rizo L, Martin H, Kim SH, Kaspar R, Taksir TV, Griffiths DA, Cheng SH, Shihabuddin LS, Kaspar BK (2008) Delivery of AAV-IGF-1 to the CNS extends survival in ALS mice through modification of aberrant glial cell activity. Mol Ther 16(6):1056–1064.  https://doi.org/10.1038/mt.2008.60 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13(5):517–526.  https://doi.org/10.1016/j.cmet.2011.02.018 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Downey, L.A., Simpson, T., Timmer, J., Nolidin, K., Croft, K., Wesnes, K.A., Scholey, A Deleuil, S.,Stough, C. (2018). Impaired verbal episodic memory in healthy older adults is marked by increased F2-Isoprostanes. Prostoglandins, Leukotrienes and Essential Fatty Acids, 129, 32–37.  https://doi.org/10.1016/j.plefa.2018.02.001 CrossRefGoogle Scholar
  40. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638CrossRefGoogle Scholar
  41. Elmore MRP, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL, Green KN (2014) CSF1 receptor signaling is necessary for microglia viability, which unmasks a cell that rapidly repopulates the microglia-depleted adult brain. Neuron 82(2):380–397.  https://doi.org/10.1016/j.neuron.2014.02.040 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW (2011) Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 6(10):e26317.  https://doi.org/10.1371/journal.pone.0026317 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Erny D, de Angelis ALH, Jaitin D, Wieghofer P, Staszewski O, David E et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977.  https://doi.org/10.1038/nn.4030 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Erny D, Hrabě de Angelis AL, Prinz M (2016) Communicating systems in the body: how microbiota and microglia cooperate. Immunology 150(1):7–15.  https://doi.org/10.1111/imm.12645 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Favier CF, Vaughan EE, De Vos WM, Akkermans ADL (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68(1):219–226.  https://doi.org/10.1128/aem.68.1.219-226.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Fjell Anders M, Walhovd Kristine B (2010) Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci 21:187PubMedGoogle Scholar
  47. Franceschi C, BonafÈ M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2006) Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908(1):244–254.  https://doi.org/10.1111/j.1749-6632.2000.tb06651.x CrossRefGoogle Scholar
  48. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017) Inflammaging and ‘Garb-aging’. Trends Endocrinol Metab 28(3):199–212.  https://doi.org/10.1016/j.tem.2016.09.005 CrossRefPubMedGoogle Scholar
  49. Francis HM, Stevenson RJ (2011) Higher reported saturated fat and refined sugar intake is associated with reduced hippocampal-dependent memory and sensitivity to interoceptive signals. Behav Neurosci 125(6):943–955.  https://doi.org/10.1037/a0025998 CrossRefPubMedGoogle Scholar
  50. Frasca D, Blomberg BB (2016) Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 17(1):7–19.  https://doi.org/10.1007/s10522-015-9578-8 CrossRefPubMedGoogle Scholar
  51. Frei B, England L, Ames BN (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci U S A 86(16):6377–6381CrossRefGoogle Scholar
  52. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, Anastasovska J, Ghourab S, Hankir M, Zhang S, Carling D, Swann JR, Gibson G, Viardot A, Morrison D, Louise Thomas E, Bell JD (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611.  https://doi.org/10.1038/ncomms4611 https://www.nature.com/articles/ncomms4611#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  53. Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20:145.  https://doi.org/10.1038/nn.4476 CrossRefGoogle Scholar
  54. Gabaldón T, Huynen MA (2003) Reconstruction of the proto-mitochondrial metabolism. Science 301(5633):609CrossRefGoogle Scholar
  55. Gabaldón T, Huynen MA (2007) From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism. PLoS Comput Biol 3(11):e219.  https://doi.org/10.1371/journal.pcbi.0030219 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, de Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31(4):677–689.  https://doi.org/10.1016/j.immuni.2009.08.020 CrossRefPubMedGoogle Scholar
  57. Galley JD, Bailey MT (2014) Impact of stressor exposure on the interplay between commensal microbiota and host inflammation. Gut Microbes 5(3):390–396.  https://doi.org/10.4161/gmic.28683 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science (New York, NY) 312(5778):1355–1359.  https://doi.org/10.1126/science.1124234 CrossRefGoogle Scholar
  59. Glaser R, Kiecolt-Glaser JK (2005) Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5:243.  https://doi.org/10.1038/nri1571 CrossRefPubMedGoogle Scholar
  60. Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, Johnson RW (2005) Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J 19(10):1329–1331.  https://doi.org/10.1096/fj.05-3776fje CrossRefPubMedGoogle Scholar
  61. Goehler LE, Gaykema RPA, Opitz N, Reddaway R, Badr N, Lyte M (2005) Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 19(4):334–344.  https://doi.org/10.1016/j.bbi.2004.09.002 CrossRefPubMedGoogle Scholar
  62. Gonzalez-Fraguela ME, Blanco L, Fernandez CI, Lorigados L, Serrano T, Fernandez JL (2018) Glutathione depletion: Starting point of brain metabolic stress, neuroinflammation and cognitive impairment in rats. Brain Res Bull 137:120–131.  https://doi.org/10.1016/j.brainresbull.2017.11.015 Growing older. (2015)CrossRefPubMedGoogle Scholar
  63. Gruninger TR, LeBoeuf B, Liu Y, Rene Garcia L (2007) Molecular signaling involved in regulating feeding and other mitivated behaviors. Mol Neurobiol 35(1):1–19.  https://doi.org/10.1007/BF02700621 CrossRefPubMedGoogle Scholar
  64. Haghikia A, Jörg S, Duscha A, Berg J, Manzel A, Waschbisch A, Hammer A, Lee DH, May C, Wilck N, Balogh A, Ostermann AI, Schebb NH, Akkad DA, Grohme DA, Kleinewietfeld M, Kempa S, Thöne J, Demir S, Müller DN, Gold R, Linker RA (2015) Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43(4):817–829.  https://doi.org/10.1016/j.immuni.2015.09.007 CrossRefPubMedGoogle Scholar
  65. Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 108(7):3047–3052CrossRefGoogle Scholar
  66. Hofer M, Pagliusi SR, Hohn A, Leibrock J, Barde YA (1990) Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J 9(8):2459–2464CrossRefGoogle Scholar
  67. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291(5505):881CrossRefGoogle Scholar
  68. Hopkins MJ, Macfarlane GT (2002) Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol 51(5):448–454.  https://doi.org/10.1099/0022-1317-51-5-448 CrossRefPubMedGoogle Scholar
  69. Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A (2004) Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 141(5):874–880.  https://doi.org/10.1038/sj.bjp.0705682 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ivanov II, Frutos R, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, Finlay BB, Littman DR (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4(4):337–349.  https://doi.org/10.1016/j.chom.2008.09.009 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498.  https://doi.org/10.1016/j.cell.2009.09.033 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Jiménez E, Fernández L, Marín ML, Martín R, Odriozola JM, Nueno-Palop C, Narbad A, Olivares M, Xaus J, Rodríguez JM (2005) Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 51(4):270–274.  https://doi.org/10.1007/s00284-005-0020-3 CrossRefPubMedGoogle Scholar
  73. Kalghatgi S, Spina CS, Costello JC, Liesa M, Morones-Ramirez JR, Slomovic S, Molina A, Shirihai OS, Collins JJ (2013) Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci Transl Med 5(192):192ra185.  https://doi.org/10.1126/scitranslmed.3006055 CrossRefGoogle Scholar
  74. Kamada N, Seo S-U, Chen GY, Núñez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321.  https://doi.org/10.1038/nri3430 CrossRefPubMedGoogle Scholar
  75. Keith TZ, Reynolds MR (2010) Cattell–Horn–Carroll abilities and cognitive tests: what we’ve learned from 20 years of research. Psychol Sch 47(7):635–650.  https://doi.org/10.1002/pits.20496 CrossRefGoogle Scholar
  76. Kierdorf K, Prinz M (2013) Factors regulating microglia activation. Front Cell Neurosci 7:44.  https://doi.org/10.3389/fncel.2013.00044 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kim HJ, Leeds P, Chuang D-M (2009) The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem 110(4):1226–1240.  https://doi.org/10.1111/j.1471-4159.2009.06212.x CrossRefPubMedPubMedCentralGoogle Scholar
  78. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6):1332–1345.  https://doi.org/10.1016/j.cell.2016.05.041 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Konsman JP, Parnet P, Dantzer R (2002) Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci 25(3):154–159.  https://doi.org/10.1016/S0166-2236(00)02088-9 CrossRefPubMedGoogle Scholar
  80. Kumar A, Wu H, Collier-Hyams LS, Hansen JM, Li T, Yamoah K, Pan ZQ, Jones DP, Neish AS (2007) Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J 26(21):4457–4466.  https://doi.org/10.1038/sj.emboj.7601867 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Kuo H-K, Yen C-J, Chang C-H, Kuo C-K, Chen J-H, Sorond F (2005) Relation of C-reactive protein to stroke, cognitive disorders, and depression in the general population: systematic review and meta-analysis. Lancet Neurol 4(6):371–380.  https://doi.org/10.1016/S1474-4422(05)70099-5 CrossRefPubMedGoogle Scholar
  82. Kupfer DJ, Van Cauter E, Leproult R (1996) Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J Clin Endocrinol Metab 81(7):2468–2473.  https://doi.org/10.1210/jcem.81.7.8675562 CrossRefPubMedGoogle Scholar
  83. Kwon G, Lee J, Lim Y-H (2016) Dairy Propionibacterium extends the mean lifespan of Caenorhabditis elegans via activation of the innate immune system. Sci Rep 6:31713.  https://doi.org/10.1038/srep31713 https://www.nature.com/articles/srep31713#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lapchak PA, Araujo DM, Beck KD, Finch CE, Johnson SA, Hefti F (1993) BDNF and trkB mRNA expression in the hippocampal formation of aging rats. Neurobiol Aging 14(2):121–126.  https://doi.org/10.1016/0197-4580(93)90087-R CrossRefPubMedGoogle Scholar
  85. LeBlanc JG, del Carmen S, Miyoshi A, Azevedo V, Sesma F, Langella P, Bermúdez-Humarán LG, Watterlot L, Perdigon G, de Moreno de LeBlanc A (2011) Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn’s disease in mice. J Biotechnol 151(3):287–293.  https://doi.org/10.1016/j.jbiotec.2010.11.008 CrossRefPubMedGoogle Scholar
  86. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24(2):160–168.  https://doi.org/10.1016/j.copbio.2012.08.005 CrossRefPubMedGoogle Scholar
  87. Lee Seung I, Jeong Soo R, Kang Young M, Han Dae H, Jin Byung K, Namgung U, Kim Byung G (2010) Endogenous expression of interleukin-4 regulates macrophage activation and confines cavity formation after traumatic spinal cord injury. J Neurosci Res 88(11):2409–2419.  https://doi.org/10.1002/jnr.22411 CrossRefPubMedGoogle Scholar
  88. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci 108(Supplement 1):4615CrossRefGoogle Scholar
  89. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795.  https://doi.org/10.1038/nature05292 CrossRefPubMedGoogle Scholar
  90. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, Ballard C, Banerjee S, Burns A, Cohen-Mansfield J, Cooper C, Fox N, Gitlin LN, Howard R, Kales HC, Larson EB, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N (2017) Dementia prevention, intervention, and care. Lancet 390(10113):2673–2734.  https://doi.org/10.1016/S0140-6736(17)31363-6 CrossRefPubMedGoogle Scholar
  91. Logan AC, Katzman M (2005) Major depressive disorder: probiotics may be an adjuvant therapy. Med Hypotheses 64(3):533–538.  https://doi.org/10.1016/j.mehy.2004.08.019 CrossRefPubMedGoogle Scholar
  92. Logan S, Pharaoh GA, Marlin MC, Masser DR, Matsuzaki S, Wronowski B, Yeganeh A, Parks EE, Premkumar P, Farley JA, Owen DB, Humphries KM, Kinter M, Freeman WM, Szweda LI, van Remmen H, Sonntag WE (2018) Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes. Mol Metab 9:141–155.  https://doi.org/10.1016/j.molmet.2018.01.013 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Lucattini R, Likić VA, Lithgow T (2004) Bacterial proteins predisposed for targeting to mitochondria. Mol Biol Evol 21(4):652–658.  https://doi.org/10.1093/molbev/msh058 CrossRefPubMedGoogle Scholar
  94. Majkutewicz I, Kurowska E, Podlacha M, Myślińska D, Grembecka B, Ruciński J, Plucińska K, Jerzemowska G, Wrona D (2016) Dimethyl fumarate attenuates intracerebroventricular streptozotocin-induced spatial memory impairment and hippocampal neurodegeneration in rats. Behav Brain Res 308:24–37.  https://doi.org/10.1016/j.bbr.2016.04.012 CrossRefPubMedGoogle Scholar
  95. Markowska AL, Mooney M, Sonntag WE (1998) Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience 87(3):559–569.  https://doi.org/10.1016/S0306-4522(98)00143-2 CrossRefPubMedGoogle Scholar
  96. Mather M (2010) Aging and cognition. Wiley Interdiscip Rev Cogn Sci 1(3):346–362.  https://doi.org/10.1002/wcs.64 CrossRefPubMedGoogle Scholar
  97. Mazari L, Lesourd BM (1998) Nutritional influences on immune response in healthy aged persons. Mech Ageing Dev 104(1):25–40.  https://doi.org/10.1016/S0047-6374(98)00047-5 CrossRefPubMedGoogle Scholar
  98. McGrew KS (2009) CHC theory and the human cognitive abilities project: standing on the shoulders of the giants of psychometric intelligence research. Intelligence 37(1):1–10.  https://doi.org/10.1016/j.intell.2008.08.004 CrossRefGoogle Scholar
  99. Messaoudi M, Violle N, Bisson J-F, Desor D, Javelot H, Rougeot C (2011) Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2(4):256–261.  https://doi.org/10.4161/gmic.2.4.16108 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Mitchell EL, Davis AT, Brass K, Dendinger M, Barner R, Gharaibeh R, Fodor AA, Kavanagh K (2017) Reduced intestinal motility, mucosal barrier function, and inflammation in aged monkeys. J Nutr Health Aging 21(4):354–361.  https://doi.org/10.1007/s12603-016-0725-y CrossRefPubMedPubMedCentralGoogle Scholar
  101. Mitsou EK, Kakali A, Antonopoulou S, Mountzouris KC, Yannakoulia M, Panagiotakos DB, Kyriacou A (2017) Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr 117(12):1645–1655.  https://doi.org/10.1017/S0007114517001593 CrossRefPubMedGoogle Scholar
  102. Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, Pusey AE, Peeters M, Hahn BH, Ochman H (2016) Cospeciation of gut microbiota with hominids. Science 353(6297):380–382CrossRefGoogle Scholar
  103. Moon C, Baldridge MT, Wallace MA, Burnham DC-A, Virgin HW, Stappenbeck TS (2015) Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. Nature 521(7550):90–93.  https://doi.org/10.1038/nature14139 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Musaelyan K, Aldridge S, Du Preez A, Egeland M, Zunszain PA, Pariante CM et al (2018) Repeated lipopolysaccharide exposure modifies immune and sickness behaviour response in an animal model of chronic inflammation. J Psychopharmacol 32(2):236–247.  https://doi.org/10.1177/0269881117746902 CrossRefPubMedGoogle Scholar
  105. Nagpal R, Tsuji H, Takahashi T, Kawashima K, Nagata S, Nomoto K, Yamashiro Y (2016) Sensitive quantitative analysis of the meconium bacterial microbiota in healthy term infants born vaginally or by cesarean section. Front Microbiol 7:1997.  https://doi.org/10.3389/fmicb.2016.01997 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Nakagawa H, Shiozaki T, Kobatake E, Hosoya T, Moriya T, Sakai F, Taru H, Miyazaki T (2015) Effects and mechanisms of prolongevity induced by Lactobacillus gasseri SBT2055 inlearning-dependent synapse formation through brain-derived Caenorhabditis elegans. Aging Cell 15(2):227–236.  https://doi.org/10.1111/acel.12431 CrossRefGoogle Scholar
  107. Nazli A, Yang P-C, Jury J, Howe K, Watson JL, Söderholm JD, Sherman PM, Perdue MH, McKay DM (2004) Epithelia under metabolic stress perceive commensal bacteria as a threat. Am J Pathol 164(3):947–957CrossRefGoogle Scholar
  108. Neish AS, Jones RM (2014) Redox signaling mediates symbiosis between the gut microbiota and the intestine. Gut Microbes 5(2):250–253.  https://doi.org/10.4161/gmic.27917 CrossRefPubMedPubMedCentralGoogle Scholar
  109. O’Toole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350(6265):1214–1215CrossRefGoogle Scholar
  110. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao J-Z, Abe F, Osawa R (2016) Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16(1):90.  https://doi.org/10.1186/s12866-016-0708-5 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Oh KJ, Lee SE, Jung H, Kim G, Romero R, Yoon BH (2010) Detection of ureaplasmas by the polymerase chain reaction in the amniotic fluid of patients with cervical insufficiency. J Perinat Med 38(3):261–268.  https://doi.org/10.1515/JPM.2010.040 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Pase MP, Stough C (2013) Describing a taxonomy of cognitive processes for clinical trials assessing cognition. Am J Clin Nutr 98(2):509–510.  https://doi.org/10.3945/ajcn.113.065532 CrossRefPubMedGoogle Scholar
  113. Pase MP, Stough C (2014) An evidence-based method for examining and reporting cognitive processes in nutrition research. Nutr Res Rev 27(2):232–241.  https://doi.org/10.1017/S0954422414000158 CrossRefPubMedGoogle Scholar
  114. Patterson SL (2015) Immune dysregulation and cognitive vulnerability in the aging brain: interactions of microglia, IL-1β, BDNF and synaptic plasticity. Neuropharmacology 96:11–18.  https://doi.org/10.1016/j.neuropharm.2014.12.020 CrossRefPubMedGoogle Scholar
  115. Pauling L (1979) The discovery of the superoxide radical. Trends Biochem Sci 4(11):N270–N271.  https://doi.org/10.1016/0968-0004(79)90203-2 CrossRefGoogle Scholar
  116. Perez-Muñoz ME, Arrieta M-C, Ramer-Tait AE, Walter J (2017) A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5(1):48.  https://doi.org/10.1186/s40168-017-0268-4 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Peterson DA, McNulty NP, Guruge JL, Gordon JI (2007) IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2(5):328–339.  https://doi.org/10.1016/j.chom.2007.09.013 CrossRefPubMedGoogle Scholar
  118. Poeggeler B, Sambamurti K, Siedlak SL, Perry G, Smith MA, Pappolla MA (2010) A novel endogenous indole protects rodent mitochondria and extends rotifer lifespan. PLoS One 5(4):e10206.  https://doi.org/10.1371/journal.pone.0010206 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Prenderville JA, Kennedy PJ, Dinan TG, Cryan JF (2015) Adding fuel to the fire: the impact of stress on the ageing brain. Trends Neurosci 38(1):13–25.  https://doi.org/10.1016/j.tins.2014.11.001 CrossRefPubMedGoogle Scholar
  120. Proctor C, Thiennimitr P, Chattipakorn N, Chattipakorn SC (2017) Diet, gut microbiota and cognition. Metab Brain Dis 32(1):1–17.  https://doi.org/10.1007/s11011-016-9917-8 CrossRefPubMedGoogle Scholar
  121. Qin L, Wu X, Block Michelle L, Liu Y, Breese George R, Hong J-S, Knapp DJ, Crews Fulton T (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462.  https://doi.org/10.1002/glia.20467 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65.  https://doi.org/10.1038/nature08821 https://www.nature.com/articles/nature08821#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  123. Rampelli S, Candela M, Turroni S, Biagi E, Collino S, Franceschi C, O'Toole PW, Brigidi P (2013) Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany NY) 5(12):902–912CrossRefGoogle Scholar
  124. Rawji KS, Mishra MK, Michaels NJ, Rivest S, Stys PK, Yong VW (2016) Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain 139(3):653–661.  https://doi.org/10.1093/brain/awv395 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Rea K, Dinan TG, Cryan JF (2016) The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress 4:23–33.  https://doi.org/10.1016/j.ynstr.2016.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de los Reyes-Gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185CrossRefGoogle Scholar
  127. Robitsek RJ, Fortin NJ, Koh MT, Gallagher M, Eichenbaum H (2008) Cognitive aging: a common decline of episodic recollection and spatial memory in rats. J Neurosci 28(36):8945–8954CrossRefGoogle Scholar
  128. Romijn AR, Rucklidge JJ (2015) Systematic review of evidence to support the theory of psychobiotics. Nutr Rev 73(10):675–693.  https://doi.org/10.1093/nutrit/nuv025 CrossRefPubMedGoogle Scholar
  129. Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16:341–352.  https://doi.org/10.1038/nri.2016.42 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Rose S, Bennuri SC, Davis JE, Wynne R, Slattery JC, Tippett M, Delhey L, Melnyk S, Kahler SG, MacFabe DF, Frye RE (2018) Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl Psychiatry 8(1):42.  https://doi.org/10.1038/s41398-017-0089-z CrossRefPubMedPubMedCentralGoogle Scholar
  131. Round JL, Mazmanian SK (2010) Inducible Foxp3 Sup/sup regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci 107(27):12204CrossRefGoogle Scholar
  132. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK (2011) The toll-like receptor pathway establishes commensal gut colonization. Science (New York, NY) 332(6032):974–977.  https://doi.org/10.1126/science.1206095 CrossRefGoogle Scholar
  133. Sahoo S, Meijles DN, Pagano PJ (2016) NADPH oxidases: key modulators in aging and age-related cardiovascular diseases? Clin Sci 130(5):317–335CrossRefGoogle Scholar
  134. Saint-Georges-Chaumet Y, Edeas M (2016) Microbiota–mitochondria inter-talk: consequence for microbiota–host interaction. Pathog Dis 74(1):ftv096–ftv096.  https://doi.org/10.1093/femspd/ftv096 CrossRefPubMedGoogle Scholar
  135. Salthouse TA (1990) Working memory as a processing resource in cognitive aging. Dev Rev 10(1):101–124.  https://doi.org/10.1016/0273-2297(90)90006-P CrossRefGoogle Scholar
  136. Salthouse TA (2004) What and when of cognitive aging. Curr Dir Psychol Sci 13(4):140–144.  https://doi.org/10.1111/j.0963-7214.2004.00293.x CrossRefGoogle Scholar
  137. Sampson TR, Mazmanian SK (2015) Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17(5):565–576.  https://doi.org/10.1016/j.chom.2015.04.011 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Schaie KW, Willis SL (2010) The Seattle Longitudinal Study of adult cognitive development. ISSBD Bulletin 57(1):24–29PubMedPubMedCentralGoogle Scholar
  139. Schneider, W., & McGrew, K. (2012). The Cattell-Horn-Carroll model of intelligenceGoogle Scholar
  140. Scott KA, Ida M, Peterson VL, Prenderville JA, Moloney GM, Izumo T, Murphy K, Murphy A, Ross RP, Stanton C, Dinan TG, Cryan JF (2017) Revisiting Metchnikoff: age-related alterations in microbiota-gut-brain axis in the mouse. Brain Behav Immun 65:20–32.  https://doi.org/10.1016/j.bbi.2017.02.004 CrossRefGoogle Scholar
  141. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533.  https://doi.org/10.1371/journal.pbio.1002533 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Shadnoush M, Shaker Hosseini R, Mehrabi Y, Delpisheh A, Alipoor E, Faghfoori Z, Mohammadpour N, Zaringhalam Moghadam J (2013) Probiotic yogurt affects pro- and anti-inflammatory factors in patients with inflammatory bowel disease. Iran J Pharm Res: IJPR 12(4):929–936PubMedGoogle Scholar
  143. Sierra A, Gottfried-Blackmore A, Milner TA, McEwen BS, Bulloch K (2008) Steroid hormone receptor expression and function in microglia. Glia 56(6):659–674.  https://doi.org/10.1002/glia.20644 CrossRefPubMedGoogle Scholar
  144. Silwinski M, Buschke H (1999) Cross-sectional and longitudinal relationships among age, cognition, and processing speed. Psychol Aging 14(1):18–33.  https://doi.org/10.1037/0882-7974.14.1.18 CrossRefGoogle Scholar
  145. Singh-Manoux A, Kivimaki M, Glymour MM, Elbaz A, Berr C, Ebmeier KP, Ferrie JE, Dugravot A (2012) Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. BMJ 344:d7622.  https://doi.org/10.1136/bmj.d7622 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Sly LM, Krzesicki RF, Brashler JR, Buhl AE, McKinley DD, Carter DB, Chin JE (2001) Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res Bull 56(6):581–588.  https://doi.org/10.1016/S0361-9230(01)00730-4 CrossRefPubMedGoogle Scholar
  147. Sonntag WE, Ramsey M, Carter CS (2005) Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res Rev 4(2):195–212.  https://doi.org/10.1016/j.arr.2005.02.001 CrossRefPubMedGoogle Scholar
  148. Stafford JL, Albert MS, Naeser MA, Sandor T, Garvey AJ (1988) Age-related differences in computed tomographic scan measurements. Arch Neurol 45(4):409–415.  https://doi.org/10.1001/archneur.1988.00520280055016 CrossRefPubMedGoogle Scholar
  149. Stilling RM, Bordenstein SR, Dinan TG, Cryan JF (2014) Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front Cell Infect Microbiol 4:147.  https://doi.org/10.3389/fcimb.2014.00147 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Tanida M, Yamano T, Maeda K, Okumura N, Fukushima Y, Nagai K (2005) Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neurosci Lett 389(2):109–114.  https://doi.org/10.1016/j.neulet.2005.07.036 CrossRefGoogle Scholar
  151. Tengeler AC, Kiliaan AJ, Kozicz T (2018) Relationship between diet, the gut microbiota, and brain function. Nutr Rev 76(8):603–617.  https://doi.org/10.1093/nutrit/nuy016 CrossRefPubMedGoogle Scholar
  152. Tsay H-J, Wang P, Wang S-L, Ku H-H (2000) Age-associated changes of superoxide dismutase and catalase activities in the rat brain. J Biomed Sci 7(6):466–474.  https://doi.org/10.1007/BF02253362 CrossRefPubMedGoogle Scholar
  153. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031.  https://doi.org/10.1038/nature05414 https://www.nature.com/articles/nature05414#supplementary-information CrossRefGoogle Scholar
  154. Ursell LK, Haiser HJ, Van Treuren W, Garg N, Reddivari L, Vanamala J et al (2014) The intestinal metabolome: an intersection between microbiota and host. Gastroenterology 146(6):1470–1476CrossRefGoogle Scholar
  155. VanGuilder Heather D, Yan H, Farley Julie A, Sonntag William E, Freeman Willard M (2010) Aging alters the expression of neurotransmission-regulating proteins in the hippocampal synaptoproteome. J Neurochem 113(6):1577–1588.  https://doi.org/10.1111/j.1471-4159.2010.06719.x CrossRefPubMedPubMedCentralGoogle Scholar
  156. Wallace CJK, Milev R (2017) The effects of probiotics on depressive symptoms in humans: a systematic review. Ann General Psychiatry 16:14.  https://doi.org/10.1186/s12991-017-0138-2 CrossRefGoogle Scholar
  157. Wang X, Wang B-R, Zhang X-J, Xu Z, Ding Y-Q, Ju G (2002) Evidences for vagus nerve in maintenance of immune balance and transmission of immune information from gut to brain in STM-infected rats. World J Gastroenterol 8(3):540–545.  https://doi.org/10.3748/wjg.v8.i3.540 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Wang A, Keita ÅV, Phan V, McKay CM, Schoultz I, Lee J, Murphy MP, Fernando M, Ronaghan N, Balce D, Yates R, Dicay M, Beck PL, MacNaughton WK, Söderholm JD, McKay DM (2014) Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. Am J Pathol 184(9):2516–2527.  https://doi.org/10.1016/j.ajpath.2014.05.019 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E, Trichopoulos D (1995) Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr 61(6):1402S–1406S.  https://doi.org/10.1093/ajcn/61.6.1402S CrossRefGoogle Scholar
  160. Wilson RS, Beckett LA, Barnes LL, Schneider JA, Bach J, Evans DA, Bennett DA (2002) Individual differences in rates of change in cognitive abilities of older persons. Psychol Aging 17(2):179–193.  https://doi.org/10.1037/0882-7974.17.2.179 CrossRefPubMedGoogle Scholar
  161. Wright CB, Sacco RL, Rundek TR, Delman JB, Rabbani LE, Elkind MSV (2006) Interleukin-6 is associated with cognitive function: the Northern Manhattan Study. J Stroke Cerebrovasc Dis 15(1):34–38.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2005.08.009 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Yaffe K, Lindquist K, Penninx BW, Simonsick EM, Pahor M, Kritchevsky S, Launer L, Kuller L, Rubin S, Harris T (2003) Inflammatory markers and cognition in well-functioning African-American and white elders. Neurology 61(1):76–80CrossRefGoogle Scholar
  163. Yoo DY, Kim W, Nam SM, Kim DW, Chung JY, Choi SY, Yoon YS, Won MH, Hwang IK (2011) Synergistic effects of sodium butyrate, a histone deacetylase inhibitor, on increase of neurogenesis induced by pyridoxine and increase of neural proliferation in the mouse dentate gyrus. Neurochem Res 36(10):1850–1857.  https://doi.org/10.1007/s11064-011-0503-5 CrossRefPubMedGoogle Scholar
  164. Zatz LM, Jernigan TL, Ahumada AJ (1982) Changes on computed cranial tomography with aging: intracranial fluid volume. Am J Neuroradiol 3(1):1–11PubMedGoogle Scholar
  165. Zhao J, Tian F, Yan S, Zhai Q, Zhang H, Chen W (2018) Lactobacillus plantarum CCFM10 alleviating oxidative stress and restoring the gut microbiota in d-galactose-induced aging mice. Food Funct 9(2):917–924.  https://doi.org/10.1039/C7FO01574G CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Human PsychopharmacologySwinburne University of TechnologyMelbourneAustralia

Personalised recommendations