, Volume 236, Issue 7, pp 2093–2104 | Cite as

Multi-modal antidepressant-like action of 6- and 7-chloro-2-aminodihydroquinazolines in the mouse tail suspension test

  • Kavita A. Iyer
  • Katie Alix
  • Jose M. Eltit
  • Ernesto SolisJr.
  • Xiaolei Pan
  • Malaika D. Argade
  • Shailesh Khatri
  • Louis J. De Felice
  • Douglas H. Sweet
  • Marvin K. Schulte
  • Małgorzata DukatEmail author
Original Investigation



2-Amino-6-chloro-3,4-dihydroquinazoline (e.g., A6CDQ) represents a novel putative antidepressant originally thought to act through a 5-HT3 serotonin receptor antagonist mechanism. Here, we investigated this further by examining a positional isomer of A6CDQ (i.e., A7CDQ).

Materials and methods

5-HT3 receptor and transporter activity (uptake-1 and uptake-2) were investigated using a variety of in vitro assays and the in vivo mouse tail suspension test (TST).


Although A7CDQ binds at 5-HT3 receptors with low affinity (Ki = 1975 nM) compared to A6CDQ (Ki = 80 nM), it retained 5-HT3 receptor antagonist action (IC50 = 5.77 and 0.26 μM, respectively). In the mouse TST A7CDQ produced antidepressant-like actions (ED50 = 0.09 mg/kg) comparable to that of A6CDQ. In addition, A6CDQ was found to be a 5-HT releasing agent (Km = 2.8 μM) at hSERT and a reuptake inhibitor (IC50 = 1.8 μM) at hNET, whereas A7CDQ was a weak reuptake inhibitor (Km = 43.6 μM) at SERT but a releasing agent (EC50 = 3.3 μM) at hNET. Moreover, A6CDQ and A7CDQ were potent inhibitors of uptake-2 (e.g.; OCT3 IC50 = 3.9 and 5.9 μM, respectively).


A simple shift of a substituent in a common quinazoline scaffold from one position to another (i.e., a chloro group from the 6- to the 7-position) resulted in a common action in the TST but via a somewhat different mechanism. A6CDQ and A7CDQ might represent the first members of a new class of potential antidepressants with a unique multi-modal mechanism of action.


5-HT3 receptors Uptake-1 Uptake-2 SERT NET OCT Electrophysiology TST Mice 



Ki values were generously provided by the National Institute of Mental Health’s Psychoactive Drug Screening Program, # HHSN-271-2013-00017-C (NIMH PDSP). The NIMH PDSP is directed by Bryan L. Roth MD, PhD at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda MD, USA. The authors thank the following: Prof. Richard A. Glennon for fruitful discussions and proof reading of the manuscript; Dr. Richard Young for his assistance with the TST and data analysis. Kavita Iyer was the recipient of a Lowenthal Award (2013-2015).

Funding information

This study was supported in part by the A. D. Williams Trust funds (MD) and the VCU Presidential Research Quest Fund (MD and DHS) and National Institute of Health RO1 DA033930.

Compliance with ethical standards

Protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of Virginia Commonwealth University.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alix KE (2009) Novel analogs of m-chlorophenylguanidine as 5-HT3 receptor ligands. Virginia Commonwealth University, ThesisGoogle Scholar
  2. Andersen J, Stuhr-Hansen N, Zachariassen LG, Koldsø H, Schiøtt B, Strømgaard K, Kristensen AS (2014) Molecular basis for selective serotonin reuptake inhibition by the antidepressant agent fluoxetine (Prozac). Mol Pharmacol 85:703–714CrossRefGoogle Scholar
  3. Arnsten AF (2009) Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs 23(Suppl 1):33–41CrossRefGoogle Scholar
  4. Battisti UM, Sitta R, Harris A, Sakloth F, Walther D, Ruchala I, Negus SS, Baumann MH, Glennon RA, Eltit JM (2018) Effects of N-alkyl-4-methylamphetamine optical isomers on plasma membrane monoamine transporters and abuse-related behavior. ACS Chem Neurosci 9:1829–1839CrossRefGoogle Scholar
  5. Bétry C, Etiévant A, Oosterhof C, Ebert B, Sanchez C, Haddjeri N (2011) Role of 5-HT3 receptors in the antidepressant response. Pharmaceuticals 4:603–629CrossRefGoogle Scholar
  6. Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 27:699–711CrossRefGoogle Scholar
  7. Cameron KN, Solis E Jr, Ruchala I, De Felice LJ, Eltit JM (2015) Amphetamine activates calcium channels through dopamine transporter-mediated depolarization. Cell Calcium 58:457–466CrossRefGoogle Scholar
  8. Carlsson A, Corrodi H, Fuxe K, Hökfelt T (1969) Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4, alpha-dimethyl-meta-tyramine. Eur J Pharmacol 5:367–373CrossRefGoogle Scholar
  9. Davies PA (2011) Allosteric modulation of the 5-HT3 receptor. Curr Opin Pharmacol 11:75–80CrossRefGoogle Scholar
  10. Daws LC, Koek W, Mitchell NC (2013) Revisiting serotonin reuptake inhibitors and the therapeutic potential of “uptake-2” in psychiatric disorders. ACS Chem Neurosci 4:16–21CrossRefGoogle Scholar
  11. Dukat M, Alix K, Worsham J, Khatri S, Schulte MK (2013) 2-Amino-6-chloro-3,4-dihydroquinazoline: a novel 5-HT3 receptor antagonist with antidepressant character. Bioorg Med Chem Lett 23:5945–5948CrossRefGoogle Scholar
  12. Eisensamer B, Ramme G, Gimpl G, Shapa M, Ferrari U, Hapfelmeier G, Bondy B, Parsons C, Gilling K, Zieglgänsberger W, Holsboer F, Rupprecht R (2003) Antidepressants are functional antagonists at the serotonin type 3 (5-HT3) receptor. Mol Psychiatry 8:994–1007CrossRefGoogle Scholar
  13. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-Y, Pieper U, Sali A (2007) Comparative protein structure modeling using modeler. Curr Protoc Bioinformatics 5(6):1–5.6.30Google Scholar
  14. Gudelsky GA, Nash JF (1996) Carrier-mediated release of serotonin by 3,4-methylenedioxymethamphetamine: implications for serotonin-dopamine interactions. J Neurochem 66:243–249CrossRefGoogle Scholar
  15. Han DD, Gu HH (2006) Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacol 6:6CrossRefGoogle Scholar
  16. Hansch C, Bjorkroth JP, Leo A (1987) Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design. J Pharm Sci 76:663–687CrossRefGoogle Scholar
  17. Hayer-Zillgen M, Brüss M, Bönisch H (2002) Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol 136:829–836CrossRefGoogle Scholar
  18. Hope AG, Peters JA, Brown AM, Lambert JJ, Blackburn TP (1996) Characterization of a human 5-hydroxytryptamine3 receptor type A (h5-HT3R-AS) subunit stably expressed in HEK 293 cells. Br J Pharmacol 118:1237–1245CrossRefGoogle Scholar
  19. Iwamoto H, Blakely RD, De Felice LJ (2006) Na+, Cl, and pH dependence of the human choline transporter (hCHT) in Xenopus oocytes: the proton inactivation hypothesis of hCHT in synaptic vesicles. J Neurosci 26:9851–9859CrossRefGoogle Scholar
  20. Jacobsen JPR, Nielsen EØ, Hummel R, Redrobe JP, Mirza N, Weikop P (2008) Insensitivity of NMRI mice to selective serotonin reuptake inhibitors in the tail suspension test can be reversed by co-treatment with 5-hydroxytryptophan. Psychopharmacology 199:137–150CrossRefGoogle Scholar
  21. Kelder J, Grootenhuis PD, Bayada DM, Delbressine LP, Ploemen JP (1999) Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res 16:1514–1519CrossRefGoogle Scholar
  22. Kuczenski R, Segal DS, Aizenstein ML (1991) Amphetamine, cocaine, and fencamfamine: relationship between locomotor and stereotypy response profiles and caudate and accumbens dopamine dynamics. J Neurosci 11:2703–2712CrossRefGoogle Scholar
  23. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–334CrossRefGoogle Scholar
  24. Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology 155:315–322CrossRefGoogle Scholar
  25. Marona-Lewicka D, Nichols DE (1997) The effect of selective serotonin releasing agents in the chronic mild stress model of depression in rats. Stress 2:91–100CrossRefGoogle Scholar
  26. Miyake A, Mochizuki S, Takemoto Y, Akuzawa S (1995) Molecular cloning of human 5-hydroxytryptamine3 receptor: heterogeneity in distribution and function among species. Mol Pharmacol 48:407–416Google Scholar
  27. Mulgaonkar A, Venitz J, Grundemann D, Sweet DH (2013) Human organic cation transporters 1 (SLC22A1), 2 (SLC22A2), and 3 (SLC22A3) as disposition pathways for fluoroquinolone antimicrobials. Antimicrob Agents Chemother 57:2705–2711CrossRefGoogle Scholar
  28. Nash JF, Brodkin J (1991) Microdialysis studies on 3,4-methylmethamphetamine-induced dopamine release: effect of dopamine uptake inhibitors. J Pharmcol Exp Ther 259:820–825Google Scholar
  29. Pan X, Wang L, Grundemann D, Sweet DH (2013) Interaction of ethambutol with human organic cation transporters (SLC22 family) indicates potential for drug-drug interactions during antituberculosis therapy. Antimicrob Agents Chemother 57:5053–5059CrossRefGoogle Scholar
  30. Pan X, Iyer KA, Liu H, Sweet DH, Dukat M (2017) A new chemotype inhibitor for the human organic cation transporter 3 (hOCT3). Bioorg Med Chem Lett 27:4440–4445CrossRefGoogle Scholar
  31. Perez-Palomar B, Mollinedo-Gajate I, Berrocoso E, Meana JJ, Ortega JE (2018) Serotonin 5-HT3 receptor antagonism potentiates the antidepressant activity of citalopram. Neuropharmacology 133:491–502CrossRefGoogle Scholar
  32. Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732CrossRefGoogle Scholar
  33. Ramamoorthy R, Radhakrishnan M, Borah M (2008) Antidepressant-like effects of serotonin type-3 antagonist, ondansetron: an investigation in behaviour-based rodent models. Behav Pharmacol 19:29–40CrossRefGoogle Scholar
  34. Ramamoorthy R, Radhakrishnan M (2010) The auspicious role of the 5-HT3 receptor in depression: a probable neuronal target? J Psychopharmacol 24:455–469CrossRefGoogle Scholar
  35. Rodriguez-Menchaca AA, Solis E Jr, Cameron K, De Felice LJ (2012) S(+)amphetamine induces a persistent leak in the human dopamine transporter: molecular stent hypothesis. Br J Pharmacol 165:2749–2757CrossRefGoogle Scholar
  36. Rothman RB, Baumann MH (2002) Therapeutic and adverse actions of serotonin transporter substrates. Pharmacol Ther 95:73–88CrossRefGoogle Scholar
  37. Rothman RB, Baumann MH (2003) Monoamine transporters and psychostimulant drugs. Eur J Pharmacol 479:23–40CrossRefGoogle Scholar
  38. Ruchala I, Cabra V, Solis E Jr, Glennon RA, De Felice LJ, Eltit JM (2014) Electrical coupling between the human serotonin transporter and voltage-gated Ca(2+) channels. Cell Calcium 56:25–33CrossRefGoogle Scholar
  39. Scorza C, Silveira R, Nichols DE, Reyes-Parada M (1999) Effects of 5-HT-releasing agents on the extracellullar hippocampal 5-HT of rats. Implications for the development of novel antidepressants with a short onset of action. Neuropharmacology 38:1055–1061CrossRefGoogle Scholar
  40. Solis E Jr, Zdravkovic I, Tomlinson ID, Noskov SY, Rosenthal SJ, De Felice LJ (2012) 4-(4-(Dimethylamino)phenyl)-1-methylpyridinium (APP+) is a fluorescent substrate for the human serotonin transporter. J Biol Chem 287:8852–8863CrossRefGoogle Scholar
  41. Solis E Jr, Partilla JS, Sakloth F, Ruchala I, Schwienteck KL, De Felice LJ, Eltit JM, Glennon RA, Negus SS, Baumann MH (2017) N-Alkylated analogs of 4-methylamphetamine (4-MA) differentially affect monoamine transporters and abuse liability. Neuropsychopharmacology 42:1950–1961CrossRefGoogle Scholar
  42. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370CrossRefGoogle Scholar
  43. Thompson AJ, Lummis SC (2013) Discriminating between 5-HT3A and 5-HT3AB receptors. Br J Pharmacol 169:736–747CrossRefGoogle Scholar
  44. WHO (2018) Depression Accessed 20 September 2018
  45. Winer BJ (1962) Statistical principles in experimental design. McGraw-Hill, New YorkCrossRefGoogle Scholar
  46. Young R, Glennon RA (2008) MDMA (N-methyl-3,4-methylenedioxyamphetamine) and its stereoisomers: similarities and differences in behavioral effects in an automated activity apparatus in mice. Pharmacol Biochem Behav 88:318–331CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kavita A. Iyer
    • 1
  • Katie Alix
    • 1
  • Jose M. Eltit
    • 2
  • Ernesto SolisJr.
    • 2
  • Xiaolei Pan
    • 3
  • Malaika D. Argade
    • 1
  • Shailesh Khatri
    • 4
  • Louis J. De Felice
    • 2
  • Douglas H. Sweet
    • 3
  • Marvin K. Schulte
    • 5
  • Małgorzata Dukat
    • 1
    Email author
  1. 1.Department of Medicinal Chemistry, School of PharmacyVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Physiology and Biophysics, School of MedicineVirginia Commonwealth UniversityRichmondUSA
  3. 3.Department of Pharmaceutics, School of PharmacyVirginia Commonwealth UniversityRichmondUSA
  4. 4.Department of Pharmaceutical Sciences, Philadelphia College of PharmacyUniversity of SciencesPhiladelphiaUSA
  5. 5.Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kasiska Division of Health SciencesIdaho State UniversityPocatelloUSA

Personalised recommendations