The selenium-containing compound 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole reverses depressive-like behavior induced by acute restraint stress in mice: modulation of oxido-nitrosative stress and inflammatory pathway

  • Angela Maria Casaril
  • Micaela Domingues
  • Suely Ribeiro Bampi
  • Darling de Andrade Lourenço
  • Nathalia Batista Padilha
  • Eder João Lenardão
  • Mariana Sonego
  • Fabiana Kommling Seixas
  • Tiago Collares
  • Cristina Wayne Nogueira
  • Robert Dantzer
  • Lucielli SavegnagoEmail author
Original Investigation


Rationale and objectives

Stress-induced alterations in oxidative and inflammatory parameters have been implicated in the pathophysiology of mood disorders. Based on the antioxidant and anti-inflammatory properties of the selenium-containing compound 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole (CMI), we assessed its ability to reverse depression-like behavioral alterations, neuroinflammation, and oxidative imbalance induced by acute restraint stress.


Mice submitted to restraint for 240 min received CMI (1 or 10 mg/kg, orally) 10 min after the end of the stress induction. Behavioral and biochemical tests were carried out after further 30 min.


Restraint-induced depression-like behavior in the tail suspension test (TST), splash test, and new object exploration test was reversed by CMI. None of the treatments evoked locomotor alteration. In addition, CMI abrogated restraint-induced increases in plasma levels of corticosterone and in markers of oxidative stress and impaired superoxide dismutase and catalase activity in the prefrontal cortex (PFC) and hippocampus (HC). CMI also blocked stress-induced downregulation of mRNA levels of glucocorticoid receptor and brain-derived neurotrophic factor and upregulation of nuclear factor kappa B, inducible nitric oxide synthase, tumor necrosis alpha, indoelamine-2,3-dioxygenase, and glycogen synthase kinase 3 beta in PFC and HC.


These preclinical results indicate that administration of selenium-containing compounds might help to treat depression associated with inflammation and oxidative stress.

Graphical abstract


Antidepressant Selenium Acute restraint stress Oxidative stress Neuroinflammation 



The authors are grateful to UFPel and especially to the Biotechnology Graduate Program (UFPel) for providing support to carry out this work. CNPq is also acknowledged for the fellowship to LS, EL, FS, TC, and CWN.


AMC and MD performed the experiments and the analysis of data and wrote the manuscript. SRB, DAL, and MS performed the experiments. AMC, MD, and LS designed the project. NBP and EJL synthesized the compound CMI. TC, FKS, LS, and CWN supervised the experiments. RD revised the scientific content of the manuscript and provided valuable intellectual insights. All authors critically reviewed the content and approved the final version for publication.

Role of funding source

This study received financial support and scholarships from the Brazilian agencies CNPq, CAPES, and FAPERGS (PRONEM 16/2551-0000240-1, PqG 17/2551-00011046-9, and FAPERGS/CAPES 04/2018 - DOCFIX 18/2551-0000511-8).

Compliance with ethical standards

The studies were performed in accordance with protocols approved by the Committee on the Care and Use of Experimental Animal Resources at the Federal University of Pelotas, Brazil (4034-2017).

Conflict of interest

The authors declare they have no conflict of interest.


  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. CrossRefGoogle Scholar
  2. Ai H, Shi XF, Hu XP, Fang WQ, Zhang B, Lu W (2017) Acute stress regulates phosphorylation of N-methyl-d-aspartate receptor GluN2B at S1284 in hippocampus. Neuroscience 351:24–35. CrossRefPubMedGoogle Scholar
  3. Birmann PT, Sousa FSS, de Oliveira DH, Domingues M, Vieira BM, Lenardão EJ, Savegnago L (2018) 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole, a new selenium compound elicits an antinociceptive and anti-inflammatory effect in mice. Eur J Pharmacol 827:71–79. CrossRefPubMedGoogle Scholar
  4. Brigelius-Flohé R, Flohé L (2017) Selenium and redox signaling. Arch Biochem Biophys 617:48–59. CrossRefPubMedGoogle Scholar
  5. Browne CA, Lucki I (2013) Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants. Front Pharmacol 4:161. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buynitsky T, Mostofsky DI (2009) Restraint stress in biobehavioral research: recent developments. Neurosci Biobehav Rev 33:1089–1098. CrossRefPubMedGoogle Scholar
  7. Casaril AM, Domingues M, Fronza MG, Vieira B, Begnini K, Lenardão EJ, Seixas FK, Collares T, Nogueica C, Savegnago L (2017a) Antidepressant-like effect of a new selenium-containing compound is accompanied by a reduction of neuroinflammation and oxidative stress in lipopolysaccharide-challenged mice. J PsychoneuropharmacolGoogle Scholar
  8. Casaril AM, Ignasiak MT, Chuang CY, Vieira B, Padilha NB, Carroll L, Lenardão EJ, Savegnago L, Davies MJ (2017b) Selenium-containing indolyl compounds: kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins. Free Radic Biol Med 113:395–405. CrossRefPubMedGoogle Scholar
  9. Casaril AM, Martinez DM, Ricordi VG, Alves D, Lenardão EJ, Schultze E, Collares T, Seixas FK, Savegnago (2015) Evaluation of the toxicity of α-(phenylselanyl) acetophenone in mice. Regul Toxicol Pharmacol 73:868–874. doi:
  10. Chen H-JC, Spiers JG, Sernia C, Lavidis NA (2016) Acute restraint stress induces specific changes in nitric oxide production and inflammatory markers in the rat hippocampus and striatum. Free Radic Biol Med 90:219–229. CrossRefPubMedGoogle Scholar
  11. Dantzer R, O’Connor JC, Freund GG, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dobarro M, Orejana L, Aguirre N, Ramírez MJ (2013) Propranolol reduces cognitive deficits, amyloid β levels, tau phosphorylation and insulin resistance in response to chronic corticosterone administration. Int J Neuropsychopharmacol 16:1351–1360. CrossRefPubMedGoogle Scholar
  13. Domingues M, Casaril AM, Birmann PT, de Lourenço DA, Vieira BM, Begnini K, Seixas FK, Collares T, Lenardão EJ, Savegnago L (2018) Selanylimidazopyridine prevents lipopolysaccharide-induced depressive-like behavior in mice by targeting neurotrophins and inflammatory/oxidative mediators. Front Neurosci 12:486. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Elenkov IJ (2008) Neurohormonal-cytokine interactions: implications for inflammation, common human diseases and well-being. Neurochem Int 52:40–51. CrossRefPubMedGoogle Scholar
  15. Felger JC, Lotrich FE (2013) Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246:199–229. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Felger JC, Treadway MT (2017) Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacology 42:216–241. CrossRefPubMedGoogle Scholar
  17. Freitas AE, Bettio LEB, Neis VB, Santos DB, Ribeiro CM, Rosa PB, Farina M, Rodrigues AL (2014) Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 50:143–150. CrossRefGoogle Scholar
  18. Freitas AE, Machado DG, Budni J, Neis VB, Balen GO, Lopes MW, de SLF, Dalfre AL, Leal RB, Rodrigues AL (2013) Fluoxetine modulates hippocampal cell signaling pathways implicated in neuroplasticity in olfactory bulbectomized mice. Behav Brain Res 237:176–184. CrossRefPubMedGoogle Scholar
  19. Gądek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J (2016) Psychosocial stress inhibits additional stress-induced hyperexpression of NO synthases and IL-1β in brain structures. Pharmacol Reports 68:1178–1196. CrossRefGoogle Scholar
  20. Gandin V, Khalkar P, Braude J, Fernandes AP (2018) Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 127:80–97. CrossRefPubMedGoogle Scholar
  21. Gárate I, García-Bueno B, Madrigal JL, Caso JR, Alou L, Gómez-Lus ML, Leza JC (2014) Toll-like 4 receptor inhibitor TAK-242 decreases neuroinflammation in rat brain frontal cortex after stress. J Neuroinflammation 11:8. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gárate I, Garcia-Bueno B, Madrigal JLM, Caso JR, Alou L, Gomez-Lus ML, Micó JA, Leza JC (2013) Stress-induced neuroinflammation: role of the Toll-like receptor-4 pathway. Biol Psychiatry 73:32–43. CrossRefPubMedGoogle Scholar
  23. García-Bueno B, Caso JR, Leza JC (2008) Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev 32:1136–1151. CrossRefPubMedGoogle Scholar
  24. Grimes CA, Jope RS (2001) CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium. J Neurochem 78:1219–1232CrossRefGoogle Scholar
  25. Halliwell B (2007) Biochemistry of oxidative stress: Figure 1. Biochem Soc Trans 35:1147–1150. doi:
  26. Jevtić G, Nikolić T, Mirčić A, Stojković T, Velimirović M, Trajković V, Marković I, Trbovich AM, Radonjić NV, Petronijević N (2016) Mitochondrial impairment, apoptosis and autophagy in a rat brain as immediate and long-term effects of perinatal phencyclidine treatment — influence of restraint stress. Progr Neuro-Psychopharmacol Biol Psychiatry. 66:87–96Google Scholar
  27. Joëls M, Pu Z, Wiegert O, Oitzl MS, Krugers HJ (2006) Learning under stress: how does it work? Trends Cogn Sci 10:152–158. CrossRefPubMedGoogle Scholar
  28. Jope RS, Cheng Y, Lowell JA, Worthen RJ, Sitbon YH, Beurel E (2017) Stressed and inflamed, can GSK3 be blamed? Trends Biochem Sci 42:180–192. CrossRefPubMedGoogle Scholar
  29. Justice NJ, Huang L, Tian JB, Cole A, Pruski M, Hunt AJ Jr, Flores R, Zhu MX, Arenkiel BR, Zheng H (2015) Posttraumatic stress disorder-like induction elevates β-amyloid levels, which directly activates corticotropin-releasing factor neurons to exacerbate stress responses. J Neurosci 35:2612–1623. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116. CrossRefPubMedGoogle Scholar
  31. Kil J, Lobarinas E, Spankovich C, Griffiths SK, Antonelli PJ, Lynch ED, Le Prell CG (2017) Safety and efficacy of ebselen for the prevention of noise-induced hearing loss: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 390:969–979. CrossRefPubMedGoogle Scholar
  32. Kotan VO, Sarandol E, Kirhan E, Ozkaya G, Kirli S (2011) Effects of long-term antidepressant treatment on oxidative status in major depressive disorder: a 24-week follow-up study. Prog Neuro-Psychopharmacol Biol Psychiatry 35:1284–1290. CrossRefGoogle Scholar
  33. Ledo JH, Azevedo EP, Beckman D, Ribeiro FC, Santos LE, Razolli DS, Kincheski GC, Melo HM, Bellio M, Teixeira AL, Velloso LZ, Foguel D, De Felice FG, Ferreira ST (2016) Cross talk between brain innate immunity and serotonin signaling underlies depressive-like behavior induced by Alzheimer’s amyloid-β oligomers in mice. J Neurosci 36:12106–12116. CrossRefPubMedGoogle Scholar
  34. Lima-Junior DS, Costa DL, Carregaro V, Cunha LD, Silva ALN, Mineo TWP, Gutierrez FR, Bellio M, Bortoluci KR, Flavell RA, Bozza MT, Silva JS, Zamboni DS (2013) Inflammasome-derived IL-1β production induces nitric oxide–mediated resistance to Leishmania. Nat Med 19:909–915. CrossRefPubMedGoogle Scholar
  35. Loetchutinat C, Kothan S, Dechsupa S, Meesungnoen J, Jay-Gerin JP, Mankhetkorn S (2005) Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′,7′-dichlorofluorescein diacetate assay. Radiat Phys Chem 72:323–331. CrossRefGoogle Scholar
  36. Lowes DA, Almawash AM, Webster NR, Reid VL, Galley HF (2011) Melatonin and structurally similar compounds have differing effects on inflammation and mitochondrial function in endothelial cells under conditions mimicking sepsis. Br J Anesthesia 107:193–201. CrossRefGoogle Scholar
  37. Lowry OH, Rosebrough NJ, Farr AL, RandalL RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  38. Lukic I, Mitic M, Djordjevic J, Tatalovic N, Bozovic N, Soldalovic I, Mihaljevic M, Pavlovic Z, Radojcic MB, Maric NP, Adzic M (2014) Lymphocyte levels of redox-sensitive transcription factors and antioxidative enzymes as indicators of pro-oxidative state in depressive patients. Neuropsychobiology 70:1–9. CrossRefPubMedGoogle Scholar
  39. MacDowell K, Caso J, Martín-Hernández D, Madrigal JL, Leza JC, García-Bueno B (2015) Paliperidone prevents brain Toll-like receptor 4 pathway activation and neuroinflammation in rat models of acute and chronic restraint stress. Int J Neuropsychopharmacol 18.
  40. Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuro-Psychopharmacol Biol Psychiatry 35:676–692. CrossRefGoogle Scholar
  41. Martinez DM, Barcellos A, Casaril AM, Savegnago L, Lenardão EJ (2014) Antidepressant-like activity of dehydrozingerone: involvement of the serotonergic and noradrenergic systems. Pharmacol Biochem Behav 127:111–117. CrossRefGoogle Scholar
  42. Masaki C, Sharpley AL, Cooper CM, Godlewska BR, Singh N, Vasudevan SR, Harmer CJ, Churchill CG, Sharp T, Rogers RS, Cowen PJ (2016) Effects of the potential lithium-mimetic, ebselen, on impulsivity and emotional processing. Psychopharmacology 233:2655–2661. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175PubMedPubMedCentralGoogle Scholar
  44. Moretti M, Budni J, dos Santos DB, Antunes A, Daufenbach JF, Manosso LM, Farina M, Rodrigues AL (2013) Protective effects of ascorbic acid on behavior and oxidative status of restraint-stressed mice. J Mol Neurosci 49:68–79. CrossRefPubMedGoogle Scholar
  45. Morgese MG, Tucci P, COlaianna M, Zotti M, Cuomo V, Schiavone S, Trabace L (2014) Modulatory activity of soluble beta amyloid on HPA axis function in rats. Curss Pharm Des 20:2539–2546. CrossRefGoogle Scholar
  46. Morgese MG, Schiavone S, Trabace L (2017) Emerging role of amyloid beta in stress response: implication for depression and diabetes. E J Pharmacol 817:22–29. CrossRefGoogle Scholar
  47. Niki E (2012) Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products? FEBS Lett 586:3767–3770. CrossRefPubMedGoogle Scholar
  48. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  49. Parasuraman S, Raveendran R, Kesavan R (2010) Blood sample collection in small laboratory animals. J Pharmacol Pharmacother 1:87–93. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pesarico AP, Stangherlin EC, Mantovani AC, Zeni G, Nogueira CW (2015) 7-Fluoro-1,3-diphenylisoquinoline-1-amine abolishes depressive-like behavior and prefrontal cortical oxidative damage induced by acute restraint stress in mice. Physiol Behav 149:294–302. CrossRefPubMedGoogle Scholar
  51. Pinto Brod LM, Fronza MG, Vargas JP, Ludtke DS, Luchese C, Wilhelm EA, Savegnago L (2016) Involvement of monoaminergic system in the antidepressant-like effect of (octylseleno)-xylofuranoside in the mouse tail suspension test. Prog Neuro-Psychopharmacol Biol Psychiatry 65:201–207. CrossRefGoogle Scholar
  52. Rana AK, Singh D (2018) Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation: opportunities, challenges and future directions for cerebral stroke management. Neuropharmacology 139:124–136. CrossRefPubMedGoogle Scholar
  53. Rettori V, Fernandez-Solari J, Mohn C, Zubilete MAZ, De La Cal C, Prestifilippo JP, De Laurentiis A (2009) Nitric oxide at the crossroad of immunoneuroendocrine interactions. Ann N Y Acad Sci 1153:35–47. CrossRefPubMedGoogle Scholar
  54. Rosa JM, Pazini FL, Cunha MP, Colla ARS, Manosso LM, Mancini G, Souza ACG, de Bem AF, Prediger RS, Rodrigues ALS (2018) Antidepressant effects of creatine on amyloid β 1–40-treated mice: the role of GSK-3β/Nrf 2 pathway. Prog Neuro-Psychopharmacol Biol Psychiatry doi:, 86, 270, 278
  55. Schiavone S, Sorce S, Dubois-Dauphin M, Jaquet V, Colaianna M, Zotti M, Cuomo V, Trabace L, Krause K-H (2009) Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biol Psychiatry 66:384–392. CrossRefPubMedGoogle Scholar
  56. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10. CrossRefPubMedGoogle Scholar
  57. Selek S, Savas HA, Gergerlioglu HS, Bulvul F, Uz E, Yumru M (2008) The course of nitric oxide and superoxide dismutase during treatment of bipolar depressive episode. J Affect Disord 107:89–94. CrossRefPubMedGoogle Scholar
  58. Singh N, Sharpley AL, Emir UE, Masaki C, Herzallah MM, Gluck MA, Sharp T, Harmer CJ, Vasudeven SR, Cowen PJ, Churchill GC (2016) Effect of the putative lithium mimetic ebselen on brain myo-inositol, sleep and emotional processing in humans. Neuropsychopharmacology 41:1768–1778. CrossRefPubMedGoogle Scholar
  59. Spiers JG, Chen H-JC, Cuffe JSM, Sernia C, Lavidis NA (2016) Acute restraint stress induces rapid changes in central redox status and protective antioxidant genes in rats. Psychoneuroendocrinology 67:104–112. CrossRefPubMedGoogle Scholar
  60. Stepanichev M, Dygalo NN, Grigoryan G, Shishkina GT, Gylyaeva N (2014) Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. Biomed Res Int 2014:1–20. CrossRefGoogle Scholar
  61. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370CrossRefGoogle Scholar
  62. Stetler C, Miller GE (2011) Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med 73:114–126. CrossRefPubMedGoogle Scholar
  63. Strekalova T, Spanagel R, Bartsch D, Henn FA, Gass P (2004) Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29:2007–2017. CrossRefGoogle Scholar
  64. Sudati JH, Nogara PA, Saraiva RA, Wagner C, Alberto EE, Braga AL, Fachinetto R, Piquini PC, Rocha JBT (2018) Diselenoamino acid derivatives as GPx mimics and as substrates of TrxR: in vitro and in silico studies. Org Biomol Chem 16:3777–3787. CrossRefPubMedGoogle Scholar
  65. Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert T, Thompson CL, Hawrylycz M, Dang C (2013) Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acid Res 41:D996–D1008. CrossRefPubMedGoogle Scholar
  66. Surkin PN, Gallino SL, Luce V, Correa F, Solari JF, Laurentiis A (2018) Pharmacological augmentation of endocannabinoid signaling reduces the neuroendocrine response to stress. Psychoneuroendocrinology 87:131–140. CrossRefPubMedGoogle Scholar
  67. Thakare VN, Dhakane VD, Patel BM (2016) Potential antidepressant-like activity of silymarin in the acute restraint stress in mice: modulation of corticosterone and oxidative stress response in cerebral cortex and hippocampus. Pharmacol Reports 68:1020–1027. CrossRefGoogle Scholar
  68. Tsai M-C, Huang T-L (2016) Increased activities of both superoxide dismutase and catalase were indicators of acute depressive episodes in patients with major depressive disorder. Psychiatry Res 235:38–42. CrossRefPubMedGoogle Scholar
  69. Vieira BM, Thurow S, Brito JS, Perin G, Alves D, Jacob R, Santi C, Lenardão EJ (2015) Sonochemistry: an efficient alternative to the synthesis of 3-selanylindoles using CuI as catalyst. Ultrason Sonochem 27:192–199. CrossRefPubMedGoogle Scholar
  70. Walsh RN, Cummins RA (1976) The open-field test: a critical review. Psychol Bull 83:482–504CrossRefGoogle Scholar
  71. You JM, Yun SJ, Nam KN, Kang C, Won R, Lee EH (2009) Mechanism of glucocorticoid-induced oxidative stress in rat hippocampal slice cultures. Can J Physiol Pharmacol 87:440–447. CrossRefPubMedGoogle Scholar
  72. Zenker N, Bernstein DE (1958) The estimation of small amounts of corticosterone in rat plasma. J Biol Chem 231:695–701PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Angela Maria Casaril
    • 1
    • 2
  • Micaela Domingues
    • 1
  • Suely Ribeiro Bampi
    • 1
  • Darling de Andrade Lourenço
    • 1
  • Nathalia Batista Padilha
    • 3
  • Eder João Lenardão
    • 3
  • Mariana Sonego
    • 4
  • Fabiana Kommling Seixas
    • 4
  • Tiago Collares
    • 4
  • Cristina Wayne Nogueira
    • 5
  • Robert Dantzer
    • 2
  • Lucielli Savegnago
    • 1
    Email author
  1. 1.Centro de Desenvolvimento Tecnológico, Unidade de Biotecnologia, Grupo de Pesquisa em NeurobiotecnologiaUniversidade Federal de PelotasPelotasBrazil
  2. 2.Division of Internal Medicine, Department of Symptom ResearchThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Laboratório de Síntese Orgânica LimpaUniversidade Federal de PelotasPelotasBrazil
  4. 4.Centro de Desenvolvimento Tecnológico, Unidade de Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica FuncionalUniversidade Federal de PelotasPelotasBrazil
  5. 5.Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de OrganocalcogêniosUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations