Chronic stress impairs the aquaporin-4-mediated glymphatic transport through glucocorticoid signaling

  • Fang Wei
  • Jian Song
  • Cui Zhang
  • Jun Lin
  • Rong Xue
  • Li-Dong Shan
  • Shan Gong
  • Guo-Xing Zhang
  • Zheng-Hong Qin
  • Guang-Yin Xu
  • Lin-Hui WangEmail author
Original Investigation



The glymphatic system has recently been proposed to function as a brain-wide macroscopic system for the clearance of potentially harmful molecules, such as amyloid beta (e.g., Aβ), from the brain parenchyma. Previous literatures have established that the glymphatic function is dramatically suppressed by aging, traumatic brain injury, and some diseases. However, the effect of chronic stress on the glymphatic function and its underlying mechanism remains largely unknown.


Adult mice were randomly divided into four groups: chronic unpredictable mild stress (CUMS)–treated group, CUMS simultaneously treated with mifepristone (MFP) group, dexamethasone (DEX)-treated group, and control group. Stress response was observed by assessing the change of body weight, plasma corticosterone level, and behavior tests. The level of Aβ42 in cerebral tissue was assessed by ELISA. The glymphatic function was determined by using fluorescence tracer injection. The expression and localization of aquaporin-4 (AQP4) were evaluated by immunohistochemistry and western blot. The transcription level of AQP4 and anchoring molecules was evaluated by real-time PCR.


Compared with control group, CUMS-treated mice exhibited the impairment of global glymphatic function especially in the anterior brain. This change was accompanied by the decreased expression and polarization of AQP4, reduced transcription of AQP4, agrin, laminin, and dystroglycan in the anterior cortex. Similarly, the glucocorticoid receptor (GR) agonist DEX exposure could reduce the glymphatic function and AQP4 expression. Moreover, the GR antagonist MFP treatment could significantly rescue the glymphatic function and reverse the expression and polarization of AQP4 impaired by CUMS.


Chronic stress could impair the AQP4-mediated glymphatic transport in the brain through glucocorticoid signaling. Our results also suggest that GR antagonist could be beneficial to rescue the glymphatic function suppressed by chronic stress.


Glymphatic system Chronic stress Aquaporin-4 Cerebrospinal fluid Glucocorticoid receptor 



Chronic unpredictable mild stress




Cerebrospinal fluid


Subarachnoid space


Interstitial fluid






Paravascular space



Glucocorticoid receptor


Funding information

This study was supported by the National Natural Science Foundation of China (31871167), China Postdoctoral Science Foundation (No. 2016M601882), Postdoctoral Science Foundation of Jiangsu Province, China (No.1601083C), Suzhou Science and Technology Research Project (No. SYS201669), and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Compliance with ethical standards

All experiments were conducted in accordance with the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (Council of Europe No. 123, Strasbourg 1985), and all experimental protocols were approved by the Institutional Animal Care and Use Committee of Soochow University.

Conflict of interest

The authors declare that there is no conflict of interest.


  1. Achariyar TM, Li B, Peng W, Verghese PB, Shi Y, McConnell E, Benraiss A, Kasper T, Song W, Takano T, Holtzman DM, Nedergaard M, Deane R (2016) Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol Neurodegener 11:74PubMedPubMedCentralCrossRefGoogle Scholar
  2. Baglietto-Vargas D, Medeiros R, Martinez-Coria H, LaFerla FM, Green KN (2013) Mifepristone alters amyloid precursor protein processing to preclude amyloid beta and also reduces tau pathology. Biol Psychiatry 74:357–366PubMedPubMedCentralCrossRefGoogle Scholar
  3. Banasr M, Chowdhury GM, Terwilliger R, Newton SS, Duman RS, Behar KL, Sanacora G (2010) Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry 15:501–511PubMedCrossRefGoogle Scholar
  4. Banasr M, Valentine GW, Li XY, Gourley SL, Taylor JR, Duman RS (2007) Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol Psychiatry 62:496–504PubMedCrossRefGoogle Scholar
  5. Benveniste H, Lee H, Volkow ND (2017) The glymphatic pathway. Neuroscientist 1073858417691030Google Scholar
  6. Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, Schatzberg AF, Myers RM, Akil H, Watson SJ (2011) Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry 16:634–646PubMedCrossRefGoogle Scholar
  7. Camassa LMA, Lunde LK, Hoddevik EH, Stensland M, Boldt HB, De Souza GA, Ottersen OP, Amiry-Moghaddam M (2015) Mechanisms underlying AQP4 accumulation in astrocyte endfeet. Glia 63:2073–2091PubMedCrossRefGoogle Scholar
  8. Carroll JC, Iba M, Bangasser DA, Valentino RJ, James MJ, Brunden KR, Lee VM, Trojanowski JQ (2011) Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy. J Neurosci 31:14436–14449PubMedPubMedCentralCrossRefGoogle Scholar
  9. Conrad CD, Lupien SJ, McEwen BS (1999) Support for a bimodal role for type II adrenal steroid receptors in spatial memory. Neurobiol Learn Mem 72:39–46PubMedCrossRefGoogle Scholar
  10. Csernansky JG, Dong H, Fagan AM, Wang L, Xiong C, Holtzman DM, Morris JC (2006) Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am J Psychiatry 163:2164–2169PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cuadrado-Tejedor M, Ricobaraza A, Frechilla D, Franco R, Perez-Mediavilla A, Garcia-Osta A (2012) Chronic mild stress accelerates the onset and progression of the Alzheimer’s disease phenotype in Tg2576 mice. J Alzheimers Dis 28:567–578PubMedCrossRefGoogle Scholar
  12. Czeh B, Muller-Keuker JI, Rygula R, Abumaria N, Hiemke C, Domenici E, Fuchs E (2007) Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology 32:1490–1503PubMedCrossRefGoogle Scholar
  13. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475PubMedCrossRefGoogle Scholar
  14. DeBattista C, Belanoff J, Glass S, Khan A, Horne RL, Blasey C, Carpenter LL, Alva G (2006) Mifepristone versus placebo in the treatment of psychosis in patients with psychotic major depression. Biol Psychiatry 60:1343–1349PubMedCrossRefGoogle Scholar
  15. Djamshidian A, Lees AJ (2014) Can stress trigger Parkinson’s disease? J Neurol Neurosurg Psychiatry 85:878–881PubMedCrossRefGoogle Scholar
  16. Dong L, Li B, Verkhratsky A, Peng L (2015) Cell type-specific in vivo expression of genes encoding signalling molecules in the brain in response to chronic mild stress and chronic treatment with fluoxetine. Psychopharmacology 232:2827–2835PubMedCrossRefGoogle Scholar
  17. Dong L, Wang S, Li Y, Zhao Z, Shen Y, Liu L, Xu G, Ma C, Li S, Zhang X, Cong B (2017) RU486 reverses emotional disorders by influencing astrocytes and endoplasmic reticulum stress in chronic restraint stress challenged rats. Cell Physiol Biochem 42:1098–1108PubMedCrossRefGoogle Scholar
  18. Eilert-Olsen M, Haj-Yasein NN, Vindedal GF, Enger R, Gundersen GA, Hoddevik EH, Petersen PH, Haug FM, Skare O, Adams ME, Froehner SC, Burkhardt JM, Thoren AE, Nagelhus EA (2012) Deletion of aquaporin-4 changes the perivascular glial protein scaffold without disrupting the brain endothelial barrier. Glia 60:432–440PubMedCrossRefGoogle Scholar
  19. Enger R, Gundersen GA, Haj-Yasein NN, Eilert-Olsen M, Thoren AE, Vindedal GF, Petersen PH, Skare O, Nedergaard M, Ottersen OP, Nagelhus EA (2012) Molecular scaffolds underpinning macroglial polarization: an analysis of retinal Muller cells and brain astrocytes in mouse. Glia 60:2018–2026PubMedPubMedCentralCrossRefGoogle Scholar
  20. Frigeri A, Nicchia GP, Nico B, Quondamatteo F, Herken R, Roncali L, Svelto M (2001) Aquaporin-4 deficiency in skeletal muscle and brain of dystrophic mdx mice. FASEB J 15:90–98PubMedCrossRefGoogle Scholar
  21. Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, Hanouz JL, Emery E, Touze E, Vivien D, Gauberti M (2014) Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45:3092–3096PubMedCrossRefGoogle Scholar
  22. Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM (2006) Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci 26:9047–9056PubMedCrossRefGoogle Scholar
  23. He XF, Liu DX, Zhang Q, Liang FY, Dai GY, Zeng JS, Pei Z, Xu GQ, Lan Y (2017) Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice. Front Mol Neurosci 10:144PubMedPubMedCentralCrossRefGoogle Scholar
  24. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R, Nedergaard M (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34:16180–16193PubMedPubMedCentralCrossRefGoogle Scholar
  25. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111PubMedPubMedCentralCrossRefGoogle Scholar
  26. Jeong YH, Park CH, Yoo J, Shin KY, Ahn SM, Kim HS, Lee SH, Emson PC, Suh YH (2006) Chronic stress accelerates learning and memory impairments and increases amyloid deposition in APPV717I-CT100 transgenic mice, an Alzheimer’s disease model. FASEB J 20:729–731PubMedCrossRefGoogle Scholar
  27. Jessen NA, Munk AS, Lundgaard I, Nedergaard M (2015) The glymphatic system: a beginner’s guide. Neurochem Res 40:2583–2599PubMedPubMedCentralCrossRefGoogle Scholar
  28. Joshi YB, Chu J, Pratico D (2013) Knockout of 5-lipoxygenase prevents dexamethasone-induced tau pathology in 3xTg mice. Aging Cell 12:706–711PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76:845–861PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kulstad JJ, McMillan PJ, Leverenz JB, Cook DG, Green PS, Peskind ER, Wilkinson CW, Farris W, Mehta PD, Craft S (2005) Effects of chronic glucocorticoid administration on insulin-degrading enzyme and amyloid-beta peptide in the aged macaque. J Neuropathol Exp Neurol 64:139–146PubMedCrossRefGoogle Scholar
  31. Landfield PW, Blalock EM, Chen KC, Porter NM (2007) A new glucocorticoid hypothesis of brain aging: implications for Alzheimer’s disease. Curr Alzheimer Res 4:205–212PubMedPubMedCentralCrossRefGoogle Scholar
  32. Lee BK, Glass TA, Wand GS, McAtee MJ, Bandeen-Roche K, Bolla KI, Schwartz BS (2008) Apolipoprotein e genotype, cortisol, and cognitive function in community-dwelling older adults. Am J Psychiatry 165:1456–1464PubMedPubMedCentralCrossRefGoogle Scholar
  33. Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, Logan J, Nedergaard M, Benveniste H (2015) The effect of body posture on brain glymphatic transport. J Neurosci 35:11034–11044PubMedPubMedCentralCrossRefGoogle Scholar
  34. Lien CF, Mohanta SK, Frontczak-Baniewicz M, Swinny JD, Zablocka B, Gorecki DC (2012) Absence of glial alpha-dystrobrevin causes abnormalities of the blood-brain barrier and progressive brain edema. J Biol Chem 287:41374–41385PubMedPubMedCentralCrossRefGoogle Scholar
  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefGoogle Scholar
  36. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedPubMedCentralGoogle Scholar
  37. Lucassen PJ, Pruessner J, Sousa N, Almeida OF, Van Dam AM, Rajkowska G, Swaab DF, Czeh B (2014) Neuropathology of stress. Acta Neuropathol 127:109–135PubMedCrossRefGoogle Scholar
  38. Lundgaard I, Li B, Xie L, Kang H, Sanggaard S, Haswell JD, Sun W, Goldman S, Blekot S, Nielsen M, Takano T, Deane R, Nedergaard M (2015) Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat Commun 6:6807PubMedPubMedCentralCrossRefGoogle Scholar
  39. Lundgaard I, Lu ML, Yang E, Peng W, Mestre H, Hitomi E, Deane R, Nedergaard M (2017) Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab 37:2112–2124PubMedCrossRefGoogle Scholar
  40. Lundgaard I, Wang W, Eberhardt A, Vinitsky HS, Reeves BC, Peng S, Lou N, Hussain R, Nedergaard M (2018) Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Sci Rep 8:2246PubMedPubMedCentralCrossRefGoogle Scholar
  41. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774PubMedPubMedCentralCrossRefGoogle Scholar
  42. McEwen BS, Gianaros PJ (2010) Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci 1186:190–222PubMedPubMedCentralCrossRefGoogle Scholar
  43. Medina A, Watson SJ, Bunney W Jr, Myers RM, Schatzberg A, Barchas J, Akil H, Thompson RC (2016) Evidence for alterations of the glial syncytial function in major depressive disorder. J Psychiatr Res 72:15–21PubMedCrossRefGoogle Scholar
  44. Mejia S, Giraldo M, Pineda D, Ardila A, Lopera F (2003) Nongenetic factors as modifiers of the age of onset of familial Alzheimer’s disease. Int Psychogeriatr 15:337–349PubMedCrossRefGoogle Scholar
  45. Miguel-Hidalgo JJ, Baucom C, Dilley G, Overholser JC, Meltzer HY, Stockmeier CA, Rajkowska G (2000) Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry 48:861–873PubMedCrossRefGoogle Scholar
  46. Mo C, Renoir T, Hannan AJ (2014) Effects of chronic stress on the onset and progression of Huntington’s disease in transgenic mice. Neurobiol Dis 71:81–94PubMedCrossRefGoogle Scholar
  47. Musiek ES, Holtzman DM (2015) Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’. Nat Neurosci 18:800–806PubMedPubMedCentralCrossRefGoogle Scholar
  48. Nedergaard M (2013) Neuroscience. Garbage truck of the brain. Science 340: 1529–1530Google Scholar
  49. Neely JD, Amiry-Moghaddam M, Ottersen OP, Froehner SC, Agre P, Adams ME (2001) Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc Natl Acad Sci U S A 98:14108–14113PubMedPubMedCentralCrossRefGoogle Scholar
  50. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180PubMedCrossRefGoogle Scholar
  51. Nishioka R, Sugimoto K, Aono H, Mise A, Choudhury ME, Miyanishi K, Islam A, Fujita T, Takeda H, Takahashi H, Yano H, Tanaka J (2016) Treadmill exercise ameliorates ischemia-induced brain edema while suppressing Na(+)/H(+) exchanger 1 expression. Exp Neurol 277:150–161PubMedCrossRefGoogle Scholar
  52. Noell S, Wolburg-Buchholz K, Mack AF, Beedle AM, Satz JS, Campbell KP, Wolburg H, Fallier-Becker P (2011) Evidence for a role of dystroglycan regulating the membrane architecture of astroglial endfeet. Eur J Neurosci 33:2179–2186PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ostadhadi S, Imran Khan M, Norouzi-Javidan A, Dehpour AR (2016) Antidepressant effect of pramipexole in mice forced swimming test: a cross talk between dopamine receptor and NMDA/nitric oxide/cGMP pathway. Biomed Pharmacother 81:295–304PubMedCrossRefGoogle Scholar
  54. Pavlides C, Nivon LG, McEwen BS (2002) Effects of chronic stress on hippocampal long-term potentiation. Hippocampus 12:245–257PubMedCrossRefGoogle Scholar
  55. Peng W, Achariyar TM, Li B, Liao Y, Mestre H, Hitomi E, Regan S, Kasper T, Peng S, Ding F, Benveniste H, Nedergaard M, Deane R (2016) Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis 93:215–225PubMedPubMedCentralCrossRefGoogle Scholar
  56. Prenderville JA, Kennedy PJ, Dinan TG, Cryan JF (2015) Adding fuel to the fire: the impact of stress on the ageing brain. Trends Neurosci 38:13–25PubMedCrossRefGoogle Scholar
  57. Rajkowska G, Hughes J, Stockmeier CA, Javier Miguel-Hidalgo J, Maciag D (2013) Coverage of blood vessels by astrocytic endfeet is reduced in major depressive disorder. Biol Psychiatry 73:613–621PubMedCrossRefGoogle Scholar
  58. Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14:1225–1236PubMedPubMedCentralCrossRefGoogle Scholar
  59. Rangroo Thrane V, Thrane AS, Plog BA, Thiyagarajan M, Iliff JJ, Deane R, Nagelhus EA, Nedergaard M (2013) Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep 3:2582PubMedCrossRefGoogle Scholar
  60. Rauch SM, Huen K, Miller MC, Chaudry H, Lau M, Sanes JR, Johanson CE, Stopa EG, Burgess RW (2011) Changes in brain beta-amyloid deposition and aquaporin 4 levels in response to altered agrin expression in mice. J Neuropathol Exp Neurol 70:1124–1137PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ren H, Luo C, Feng Y, Yao X, Shi Z, Liang F, Kang JX, Wan JB, Pei Z, Su H (2017) Omega-3 polyunsaturated fatty acids promote amyloid-beta clearance from the brain through mediating the function of the glymphatic system. FASEB J 31:282–293PubMedCrossRefGoogle Scholar
  62. Reul JM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117:2505–2511PubMedCrossRefGoogle Scholar
  63. Ron NP, Kazianis JA, Padbury JF, Brown CM, McGonnigal BG, Sysyn GD, Sadowska GB, Stonestreet BS (2005) Ontogeny and the effects of corticosteroid pretreatment on aquaporin water channels in the ovine cerebral cortex. Reprod Fertil Dev 17:535–542PubMedCrossRefGoogle Scholar
  64. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17PubMedCrossRefGoogle Scholar
  65. Rothman SM, Mattson MP (2010) Adverse stress, hippocampal networks, and Alzheimer’s disease. NeuroMolecular Med 12:56–70PubMedCrossRefGoogle Scholar
  66. Satz JS, Ostendorf AP, Hou S, Turner A, Kusano H, Lee JC, Turk R, Nguyen H, Ross-Barta SE, Westra S, Hoshi T, Moore SA, Campbell KP (2010) Distinct functions of glial and neuronal dystroglycan in the developing and adult mouse brain. J Neurosci 30:14560–14572PubMedPubMedCentralCrossRefGoogle Scholar
  67. Si X, Miguel-Hidalgo JJ, O'Dwyer G, Stockmeier CA, Rajkowska G (2004) Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression. Neuropsychopharmacology 29:2088–2096PubMedPubMedCentralCrossRefGoogle Scholar
  68. Smith AD, Castro SL, Zigmond MJ (2002) Stress-induced Parkinson’s disease: a working hypothesis. Physiol Behav 77:527–531PubMedCrossRefGoogle Scholar
  69. Srivareerat M, Tran TT, Alzoubi KH, Alkadhi KA (2009) Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in beta-amyloid rat model of Alzheimer’s disease. Biol Psychiatry 65:918–926PubMedCrossRefGoogle Scholar
  70. Unemura K, Kume T, Kondo M, Maeda Y, Izumi Y, Akaike A (2012) Glucocorticoids decrease astrocyte numbers by reducing glucocorticoid receptor expression in vitro and in vivo. J Pharmacol Sci 119:30–39PubMedCrossRefGoogle Scholar
  71. Verheggen ICM, Van Boxtel MPJ, Verhey FRJ, Jansen JFA, Backes WH (2018) Interaction between blood-brain barrier and glymphatic system in solute clearance. Neurosci Biobehav Rev 90:26–33PubMedCrossRefGoogle Scholar
  72. Wang L, Lin F, Wang J, Wu J, Han R, Zhu L, Difiglia M, Qin Z (2012a) Expression of mutant N-terminal huntingtin fragment (htt552-100Q) in astrocytes suppresses the secretion of BDNF. Brain Res 1449:69–82PubMedCrossRefGoogle Scholar
  73. Wang L, Lin F, Wang J, Wu J, Han R, Zhu L, Zhang G, DiFiglia M, Qin Z (2012b) Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes. Acta Biochim Biophys Sin 44:249–258PubMedCrossRefGoogle Scholar
  74. Wei F, Zhang C, Xue R, Shan L, Gong S, Wang G, Tao J, Xu G, Zhang G, Wang L (2017) The pathway of subarachnoid CSF moving into the spinal parenchyma and the role of astrocytic aquaporin-4 in this process. Life Sci 182:29–40PubMedCrossRefGoogle Scholar
  75. Wilson RS, Arnold SE, Schneider JA, Kelly JF, Tang Y, Bennett DA (2006) Chronic psychological distress and risk of Alzheimer’s disease in old age. Neuroepidemiology 27:143–153PubMedCrossRefGoogle Scholar
  76. Wilson RS, Evans DA, Bienias JL, Mendes de Leon CF, Schneider JA, Bennett DA (2003) Proneness to psychological distress is associated with risk of Alzheimer’s disease. Neurology 61:1479–1485PubMedCrossRefGoogle Scholar
  77. Wu LM, Han H, Wang QN, Hou HL, Tong H, Yan XB, Zhou JN (2007) Mifepristone repairs region-dependent alteration of synapsin I in hippocampus in rat model of depression. Neuropsychopharmacology 32:2500–2510PubMedCrossRefGoogle Scholar
  78. Wu Q, Yang X, Zhang Y, Zhang L, Feng L (2016) Chronic mild stress accelerates the progression of Parkinson’s disease in A53T alpha-synuclein transgenic mice. Exp Neurol 285:61–71PubMedCrossRefGoogle Scholar
  79. Wulsin AC, Herman JP, Solomon MB (2010) Mifepristone decreases depression-like behavior and modulates neuroendocrine and central hypothalamic-pituitary-adrenocortical axis responsiveness to stress. Psychoneuroendocrinology 35:1100–1112PubMedPubMedCentralCrossRefGoogle Scholar
  80. Xia M, Yang L, Sun G, Qi S, Li B (2017) Mechanism of depression as a risk factor in the development of Alzheimer’s disease: the function of AQP4 and the glymphatic system. Psychopharmacology 234:365–379PubMedCrossRefGoogle Scholar
  81. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O'Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377PubMedCrossRefGoogle Scholar
  82. Zhang C, Lin J, Wei F, Song J, Chen W, Shan L, Xue R, Wang G, Tao J, Zhang G, Xu GY, Wang L (2018) Characterizing the glymphatic influx by utilizing intracisternal infusion of fluorescently conjugated cadaverine. Life Sci 201:150–160PubMedCrossRefGoogle Scholar
  83. Zhang J, Zhan Z, Li X, Xing A, Jiang C, Chen Y, Shi W, An L (2017) Intermittent fasting protects against Alzheimer’s disease possible through restoring aquaporin-4 polarity. Front Mol Neurosci 10:395PubMedPubMedCentralCrossRefGoogle Scholar
  84. Zhang X, Song D, Gu L, Ren Y, Verkhratsky A, Peng L (2015) Decrease of gene expression of astrocytic 5-HT2B receptors parallels development of depressive phenotype in a mouse model of Parkinson’s disease. Front Cell Neurosci 9:388PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physiology and NeurobiologyMedical College of Soochow UniversitySuzhouPeople’s Republic of China
  2. 2.Department of OrthopaedicsThe first affiliated hospital of Soochow UniversitySuzhouPeople’s Republic of China
  3. 3.Department of Pharmacology and Laboratory of Aging and Nervous DiseasesSoochow University School of PharmacySuzhouPeople’s Republic of China
  4. 4.Institute of NeuroscienceSoochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations