Advertisement

Psychopharmacology

, Volume 236, Issue 1, pp 321–338 | Cite as

Hippocampal network oscillations at the interplay between innate anxiety and learned fear

  • Gürsel ÇalışkanEmail author
  • Oliver Stork
Review
  • 287 Downloads

Abstract

The hippocampus plays a central role as a hub for episodic memory and as an integrator of multimodal sensory information in time and space. Thereby, it critically determines contextual setting and specificity of episodic memories. It is also a key site for the control of innate anxiety states and involved in psychiatric diseases with heightened anxiety and generalized fear memory such as post-traumatic stress disorder (PTSD). Expression of both innate “unlearned” anxiety and “learned” fear requires contextual processing and engagement of a brain-wide network including the hippocampus together with the amygdala and medial prefrontal cortex. Strikingly, the hippocampus is also the site of emergence of oscillatory rhythms that coordinate information processing and filtering in this network. Here, we review data on how the hippocampal network oscillations and their coordination with amygdalar and prefrontal oscillations are engaged in innate threat evaluation. We further explore how such innate oscillatory communication might have an impact on contextualization and specificity of “learned” fear. We illustrate the partial overlap of fear and anxiety networks that are built by the hippocampus in conjunction with amygdala and prefrontal cortex. We further propose that (mal)-adaptive interplay via (dis)-balanced oscillatory communication between the anxiety network and the fear network may determine the strength of fear memories and their resistance to extinction.

Keywords

Unlearned innate anxiety Learned fear Posttraumatic stress disorder Extinction Oscillations Gamma Theta Sharp-wave ripple Dorsal and ventral hippocampus; amygdala Medial prefrontal cortex 

Notes

Funding information

This research was funded by grants, from the German Research Foundation (CRC779 TPB5 and STO488/6) and by the federal state of Saxony-Anhalt and the “European Regional Development Fund” (ERDF 2007–2013), Vorhaben: Centre for Behavioural Brain Sciences (CBBS) to Oliver Stork. Gürsel Çalışkan is funded by CBBS ScienceCampus financed by the Leibniz Association (SAS-2015-LIN-LWC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Glossary

Coherence

is measure of synchrony between two LFP patterns based on changes in both amplitude and phase.

Correlation

is measure of synchrony between two LFP patterns based on their phase similarity as a product of time. This measure is independent of amplitude changes in time and rather focuses on waveform similarity.

Power (Volt2/Hz)

is a measure that gives information about the strength of LFP signal at a certain frequency range. In extracellular physiology, to determine the frequency of main oscillation power, scientists convert the LFP signal into a range of frequencies (Power Spectrum) as a function of their power in the LFP signal.

Synchrony

is a measure to determine the functional communication between two regions in the brain by measuring the similarity of simultaneously recorded LFP oscillation patterns based on their fluctuations in phase and/or amplitude. The synchrony of underlying cellular firing can also be detected by measuring whether cells fire at a particular phase of oscillations recorded locally or in a remote brain region.

References

  1. Abel T, Lattal KM (2001) Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr Opin Neurobiol 11:180–187.  https://doi.org/10.1016/S0959-4388(00)00194-X CrossRefPubMedGoogle Scholar
  2. Adhikari A (2014) Distributed circuits underlying anxiety. Front Behav Neurosci 8:112.  https://doi.org/10.3389/fnbeh.2014.00112 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adhikari A, Topiwala MA, Gordon JA (2010) Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65:257–269.  https://doi.org/10.1016/j.neuron.2009.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Adhikari A, Topiwala MA, Gordon JA (2011) Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity. Neuron 71:898–910.  https://doi.org/10.1016/j.neuron.2011.07.027 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Adhikari A, Lerner TN, Finkelstein J et al (2015) Basomedial amygdala mediates top-down control of anxiety and fear. Nature 527:179–185.  https://doi.org/10.1038/nature15698 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Akirav I, Richter-Levin G (1999) Biphasic modulation of hippocampal plasticity by behavioral stress and basolateral amygdala stimulation in the rat. J Neurosci 19:10530–10535CrossRefGoogle Scholar
  7. Alberini CM (2005) Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci 28:51–56.  https://doi.org/10.1016/j.tins.2004.11.001 CrossRefPubMedGoogle Scholar
  8. Alberini CM, Ledoux JE (2013) Memory reconsolidation. Curr Biol 23:R746–R750.  https://doi.org/10.1016/j.cub.2013.06.046 CrossRefPubMedGoogle Scholar
  9. Albrecht A, Bergado-Acosta JR, Pape H-C, Stork O (2010) Role of the neural cell adhesion molecule (NCAM) in amygdalo-hippocampal interactions and salience determination of contextual fear memory. Int J Neuropsychopharmacol 13:661–674.  https://doi.org/10.1017/S1461145709991106 CrossRefPubMedGoogle Scholar
  10. Albrecht A, Çalişkan G, Oitzl MS et al (2013) Long-lasting increase of corticosterone after fear memory reactivation: anxiolytic effects and network activity modulation in the ventral hippocampus. Neuropsychopharmacology 38.  https://doi.org/10.1038/npp.2012.192
  11. An B, Hong I, Choi S (2012) Long-term neural correlates of reversible fear learning in the lateral amygdala. J Neurosci 32:16845–16856.  https://doi.org/10.1523/JNEUROSCI.3017-12.2012 CrossRefPubMedGoogle Scholar
  12. Anderson DJ, Adolphs R (2014) A framework for studying emotions across species. Cell 157:187–200.  https://doi.org/10.1016/j.cell.2014.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Baldi E, Bucherelli C (2015) Brain sites involved in fear memory reconsolidation and extinction of rodents. Neurosci Biobehav Rev 53:160–190.  https://doi.org/10.1016/j.neubiorev.2015.04.003 CrossRefPubMedGoogle Scholar
  14. Bangasser DA, Eck SR, Ordoñes Sanchez E (2018) Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology.  https://doi.org/10.1038/s41386-018-0137-2
  15. Bastos AM, Vezoli J, Fries P (2015) Communication through coherence with inter-areal delays. Curr Opin Neurobiol 31:173–180.  https://doi.org/10.1016/j.conb.2014.11.001 CrossRefPubMedGoogle Scholar
  16. Battaglia FP, Sutherland GR, McNaughton BL (2004) Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn Mem 11:697–704.  https://doi.org/10.1101/lm.73504 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bazelot M, Bocchio M, Kasugai Y et al (2015) Hippocampal theta input to the amygdala shapes feedforward inhibition to gate heterosynaptic plasticity. Neuron 87:1290–1303.  https://doi.org/10.1016/j.neuron.2015.08.024 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bergado-Acosta JR, Sangha S, Narayanan RT et al (2008) Critical role of the 65-kDa isoform of glutamic acid decarboxylase in consolidation and generalization of Pavlovian fear memory. Learn Mem 15:163–171.  https://doi.org/10.1101/lm.705408 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bocchio M, Nabavi S, Capogna M (2017) Synaptic plasticity, engrams, and network oscillations in amygdala circuits for storage and retrieval of emotional memories. Neuron 94:731–743.  https://doi.org/10.1016/j.neuron.2017.03.022 CrossRefPubMedGoogle Scholar
  20. Börgers C, Kopell N (2003) Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput 15:509–538.  https://doi.org/10.1162/089976603321192059 CrossRefPubMedGoogle Scholar
  21. Börgers C, Walker B (2013) Toggling between gamma-frequency activity and suppression of cell assemblies. Front Comput Neurosci 7:33.  https://doi.org/10.3389/fncom.2013.00033 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Born J, Wilhelm I (2012) System consolidation of memory during sleep. Psychol Res 76:192–203.  https://doi.org/10.1007/s00426-011-0335-6 CrossRefPubMedGoogle Scholar
  23. Bourtchuladze R, Frenguelli B, Blendy J et al (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68.  https://doi.org/10.1016/0092-8674(94)90400-6 CrossRefPubMedGoogle Scholar
  24. Bouton ME (1988) Context and ambiguity in the extinction of emotional learning: implications for exposure therapy. Behav Res Ther 26:137–149.  https://doi.org/10.1016/0005-7967(88)90113-1 CrossRefPubMedGoogle Scholar
  25. Boyce R, Glasgow SD, Williams S, Adamantidis A (2016) Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science (80- ) 352:812.  https://doi.org/10.1126/science.aad5252 CrossRefGoogle Scholar
  26. Bragin A, Jandó G, Nádasdy Z et al (1995) Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. Hippocampus 15:47–60Google Scholar
  27. Brownlow JA, Harb GC, Ross RJ (2015) Treatment of sleep disturbances in post-traumatic stress disorder: a review of the literature. Curr Psychiatry Rep 17.  https://doi.org/10.1007/s11920-015-0587-8
  28. Buzsaki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–570CrossRefGoogle Scholar
  29. Buzsáki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340.  https://doi.org/10.1016/S0896-6273(02)00586-X CrossRefPubMedGoogle Scholar
  30. Buzsáki G (2015) Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25:1073–1188.  https://doi.org/10.1002/hipo.22488 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science (80- ) 304:1926–1929.  https://doi.org/10.1126/science.1099745 CrossRefGoogle Scholar
  32. Buzsáki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16:130–138.  https://doi.org/10.1038/nn.3304 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Buzsáki, Wang X-J (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci:203–225.  https://doi.org/10.1146/annurev-neuro-062111-150444
  34. Buzsáki G, Lai-Wo SL, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res Rev 6:139–171.  https://doi.org/10.1016/0165-0173(83)90037-1 CrossRefGoogle Scholar
  35. Buzsáki G, Horváth Z, Urioste R et al (1992) High-frequency network oscillation in the hippocampus. Science 256:1025–1027.  https://doi.org/10.1126/science.1589772 CrossRefPubMedGoogle Scholar
  36. Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420.  https://doi.org/10.1038/nrn3241 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Cairney SA, Durrant SJ, Hulleman J, Lewis PA (2014) Targeted memory reactivation during slow wave sleep facilitates emotional memory consolidation. Sleep 37:701–707.  https://doi.org/10.5665/sleep.3572 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Çalişkan G, Stork O (2018) Hippocampal network oscillations as mediators of behavioural metaplasticity: insights from emotional learning. Neurobiol Learn MemGoogle Scholar
  39. Çalışkan G, Schulz SB, Gruber D et al (2015) Corticosterone and corticotropin-releasing factor acutely facilitate gamma oscillations in the hippocampus in vitro. Eur J Neurosci 41:31–44.  https://doi.org/10.1111/ejn.12750 CrossRefPubMedGoogle Scholar
  40. Çalişkan G, Müller I, Semtner M et al (2016) Identification of Parvalbumin interneurons as cellular substrate of fear memory persistence. Cereb Cortex 26:2325–2340.  https://doi.org/10.1093/cercor/bhw001 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Canolty R, Edwards E, Dalal S et al (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science (80- ) 313:1626–1628.  https://doi.org/10.1126/science.1128115 CrossRefGoogle Scholar
  42. Cardin JA, Carlén M, Meletis K et al (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667.  https://doi.org/10.1038/nature08002 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Cellini N, Capuozzo A (2018) Shaping memory consolidation via targeted memory reactivation during sleep. Ann N Y Acad Sci:1–20.  https://doi.org/10.1111/nyas.13855
  44. Chen Z-Y, Jing D, Bath KG et al (2006) Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science (80- ) 314:140–143.  https://doi.org/10.1126/science.1129663 CrossRefGoogle Scholar
  45. Ciocchi S, Passecker J, Malagon-Vina H et al (2015) Selective information routing by ventral hippocampal CA1 projection neurons. Science (80- ) 348:560–563.  https://doi.org/10.1126/science.aaa3245 CrossRefGoogle Scholar
  46. Colgin LL, Denninger T, Fyhn M et al (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357.  https://doi.org/10.1038/nature08573 CrossRefPubMedGoogle Scholar
  47. Contreras D, Steriade M (1995) Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci 15:604–622CrossRefGoogle Scholar
  48. Courtin J, Karalis N, Gonzalez-Campo C et al (2014) Persistence of amygdala gamma oscillations during extinction learning predicts spontaneous fear recovery. Neurobiol Learn Mem 113:82–89.  https://doi.org/10.1016/j.nlm.2013.09.015 CrossRefPubMedGoogle Scholar
  49. Craske MG, Kircanski K, Zelikowsky M et al (2008) Optimizing inhibitory learning during exposure therapy. Behav Res Ther 46:5–27.  https://doi.org/10.1016/j.brat.2007.10.003 CrossRefPubMedGoogle Scholar
  50. Crawley JN (1985) Exploratory behavior models of anxiety in mice. Neurosci Biobehav Rev 9:37–44.  https://doi.org/10.1016/0149-7634(85)90030-2 CrossRefPubMedGoogle Scholar
  51. Csicsvari J, Hirase H, Mamiya a BG (2000) Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron 28:585–594.  https://doi.org/10.1016/S0896-6273(00)00135-5 CrossRefPubMedGoogle Scholar
  52. Csicsvari J, Jamieson B, Wise KD, Buzsáki G (2003) Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37:311–322.  https://doi.org/10.1016/S0896-6273(02)01169-8 CrossRefPubMedGoogle Scholar
  53. Dannenberg H, Pabst M, Braganza O et al (2015) Synergy of direct and indirect cholinergic septo-hippocampal pathways coordinates firing in hippocampal networks. J Neurosci 35:8394–8410.  https://doi.org/10.1523/JNEUROSCI.4460-14.2015
  54. Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6:13–34.  https://doi.org/10.1038/sj.mp.4000812 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Davis M, Walker DL, Miles L, Grillon C (2010) Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 35:105–135.  https://doi.org/10.1038/npp.2009.109 CrossRefPubMedGoogle Scholar
  56. Davis P, Zaki Y, Maguire J, Reijmers LG (2017) Cellular and oscillatory substrates of fear extinction learning. Nat Neurosci 20:1624–1633.  https://doi.org/10.1038/nn.4651 CrossRefPubMedPubMedCentralGoogle Scholar
  57. de Almeida L, Idiart M, Lisman J (2009) A second function of gamma-frequency oscillations: a E%-max winner-take-all mechanism selects which cells fire. J Neurosci 29:211–220.  https://doi.org/10.1007/s11103-011-9767-z.Plastid CrossRefGoogle Scholar
  58. De Boer M, Hofman M (2017) The spectral fingerprint of sleep problems in post-traumatic stress disorder. bioRxiv Prepr 1–22.  https://doi.org/10.1101/209452
  59. Dejean C, Courtin J, Rozeske RR et al (2015) Neuronal circuits for fear expression and recovery: recent advances and potential therapeutic strategies. Biol Psychiatry 78:298–306.  https://doi.org/10.1016/j.biopsych.2015.03.017 CrossRefPubMedGoogle Scholar
  60. Dejean C, Courtin J, Karalis N et al (2016) Prefrontal neuronal assemblies temporally control fear behaviour. Nature 535:420–424.  https://doi.org/10.1038/nature18630 CrossRefPubMedGoogle Scholar
  61. Desmedt A, Marighetto A, Piazza P-V (2015) Abnormal fear memory as a model for posttraumatic stress disorder. Biol Psychiatry 78:290–297.  https://doi.org/10.1016/j.biopsych.2015.06.017 CrossRefPubMedGoogle Scholar
  62. Diekelmann S, Born J (2007) One memory, two ways to consolidate? Nat Neurosci 10:1085–1086.  https://doi.org/10.1038/nn0907-1085 CrossRefPubMedGoogle Scholar
  63. Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11:114–126.  https://doi.org/10.1038/nrn2762 CrossRefPubMedGoogle Scholar
  64. Dilgen JE, Tompa T, Saggu S et al (2013) Optogenetically evoked gamma oscillations are disturbed by cocaine administration. Front Cell Neurosci 7:213.  https://doi.org/10.3389/fncel.2013.00213 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Dudai Y (2002) Molecular bases of long-term memories: a question of persistence. Curr Opin Neurobiol 12:211–216.  https://doi.org/10.1016/S0959-4388(02)00305-7 CrossRefPubMedGoogle Scholar
  66. Dunkley BT, Doesburg SM, Jetly R et al (2015) Characterising intra- and inter-intrinsic network synchrony in combat-related post-traumatic stress disorder. Psychiatry Res Neuroimaging 234:172–181.  https://doi.org/10.1016/j.pscychresns.2015.09.002 CrossRefGoogle Scholar
  67. Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14:770–785.  https://doi.org/10.1038/nrn3599 CrossRefPubMedGoogle Scholar
  68. Etkin A, Egner T, Kalisch R (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci 15:85–93.  https://doi.org/10.1016/j.tics.2010.11.004 CrossRefPubMedGoogle Scholar
  69. Euston DR, Tatsuno M, Mcnaughton BL (2007) Fast-forward playback of recent in prefrontal memory sequences cortex during sleep. Science (80- ) 318:1147–1150.  https://doi.org/10.1126/science.1148979 CrossRefGoogle Scholar
  70. Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19.  https://doi.org/10.1016/j.neuron.2009.11.031 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Felix-Ortiz AC, Beyeler A, Seo C et al (2013) BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 79:658–664.  https://doi.org/10.1016/j.neuron.2013.06.016 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12:105–118.  https://doi.org/10.1038/nrn2979 CrossRefPubMedGoogle Scholar
  73. Fell J, Klaver P, Lehnertz K et al (2001) Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nat Neurosci 4:1259–1264.  https://doi.org/10.1038/nn759 CrossRefPubMedGoogle Scholar
  74. Fenton GE, Pollard AK, Halliday DM et al (2014) Persistent prelimbic cortex activity contributes to enhanced learned fear expression in females. Learn Mem 21:55–60.  https://doi.org/10.1101/lm.033514.113 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Fenton GE, Halliday DM, Mason R et al (2016) Sex differences in learned fear expression and extinction involve altered gamma oscillations in medial prefrontal cortex. Neurobiol Learn Mem 135:66–72.  https://doi.org/10.1016/j.nlm.2016.06.019 CrossRefPubMedGoogle Scholar
  76. Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40|[thinsp]|Hz in the hippocampus in vitro. Nature 394:186–189.  https://doi.org/10.1038/28179 CrossRefPubMedGoogle Scholar
  77. Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nature 6:119–130.  https://doi.org/10.1101/lm.97905 CrossRefGoogle Scholar
  78. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480.  https://doi.org/10.1016/j.tics.2005.08.011 CrossRefPubMedGoogle Scholar
  79. Fries P, Reynolds JH, Rorie a E, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science (80- ) 291:1560–1563.  https://doi.org/10.1126/science.291.5508.1560 CrossRefGoogle Scholar
  80. Fries P, Nikolić D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316.  https://doi.org/10.1016/j.tins.2007.05.005 CrossRefPubMedGoogle Scholar
  81. Gangadharan G, Shin J, Kim S-W et al (2016) Medial septal GABAergic projection neurons promote object exploration behavior and type 2 theta rhythm. Proc Natl Acad Sci U S A 113:6550–6555.  https://doi.org/10.1073/pnas.1605019113
  82. Garner AR, Rowland DC, Hwang SY et al (2012) Generation of a synthetic memory trace. Science (80- ) 335:1513–1516.  https://doi.org/10.1126/science.1214985 CrossRefGoogle Scholar
  83. Girardeau G, Benchenane K, Wiener SI et al (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 12:1222–1223.  https://doi.org/10.1038/nn.2384 CrossRefPubMedGoogle Scholar
  84. Girardeau G, Inema I, Buzsáki G (2017) Reactivations of emotional memory in the hippocampus–amygdala system during sleep. Nat Neurosci 20:1634–1642.  https://doi.org/10.1038/nn.4637 CrossRefPubMedGoogle Scholar
  85. Goldstein AN, Walker MP (2014) The role of sleep in emotional brain function. Annu Rev Clin Psychol 10:679–708.  https://doi.org/10.1146/annurev-clinpsy-032813-153716 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Gordon JA, Lacefield CO, Kentros CG, Hen R (2005) State-dependent alterations in hippocampal oscillations in serotonin 1A receptor-deficient mice. J Neurosci 25:6509–6519.  https://doi.org/10.1523/JNEUROSCI.1211-05.2005 CrossRefPubMedGoogle Scholar
  87. Gottesmann C (2011) The involvement of noradrenaline in rapid eye movement sleep mentation. Front Neurol DEC:1–10.  https://doi.org/10.3389/fneur.2011.00081
  88. Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337CrossRefGoogle Scholar
  89. Grupe DW, Nitschke JB (2013) Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat Rev Neurosci 14:488–501.  https://doi.org/10.1038/nrn3524 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Hájos N, Paulsen O (2009) Network mechanisms of gamma oscillations in the CA3 region of the hippocampus. Neural Netw 22:1113–1119.  https://doi.org/10.1016/j.neunet.2009.07.024 CrossRefPubMedGoogle Scholar
  91. Hajszan T, Alreja M, Leranth C (2004) Intrinsic vesicular glutamate transporter 2-immunoreactive input to septohippocampal parvalbumin-containing neurons: novel glutamatergic local circuit cells. Hippocampus 14:499–509.  https://doi.org/10.1002/hipo.10195 CrossRefPubMedGoogle Scholar
  92. Han JH, Kushner SA, Yiu AP et al (2009) Selective erasure of a fear memory. Science (80- ) 323:1492–1496.  https://doi.org/10.1126/science.1164139 CrossRefGoogle Scholar
  93. Hasenstaub A, Shu Y, Haider B et al (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435.  https://doi.org/10.1016/j.neuron.2005.06.016 CrossRefPubMedGoogle Scholar
  94. Hauner KK, Howard JD, Zelano C, Gottfried JA (2013) Stimulus-specific enhancement of fear extinction during slow-wave sleep. Nat Neurosci 16:1553–1555.  https://doi.org/10.1038/nn.3527 CrossRefPubMedPubMedCentralGoogle Scholar
  95. He J, Sun H-Q, Li S-X et al (2015) Effect of conditioned stimulus exposure during slow wave sleep on fear memory extinction in humans. Sleep 38:423–431.  https://doi.org/10.5665/sleep.4502 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Headley DB, Paré D (2013) In sync: gamma oscillations and emotional memory. Front Behav Neurosci 7:170.  https://doi.org/10.3389/fnbeh.2013.00170 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Headley DB, Paré D (2017) Common oscillatory mechanisms across multiple memory systems. npj Sci Learn 2(1).  https://doi.org/10.1038/s41539-016-0001-2
  98. Hermans D, Craske MG, Mineka S, Lovibond PF (2006) Extinction in human fear conditioning. Biol Psychiatry 60:361–368.  https://doi.org/10.1016/j.biopsych.2005.10.006 CrossRefPubMedGoogle Scholar
  99. Herry C, Ciocchi S, Senn V et al (2008) Switching on and off fear by distinct neuronal circuits. Nature 454:600–606.  https://doi.org/10.1038/nature07166 CrossRefGoogle Scholar
  100. Hölscher C, Anwyl R, Rowan MJ (1997) Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo. J Neurosci 17:6470–6477CrossRefGoogle Scholar
  101. Hübner C, Bosch D, Gall A et al (2014) Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory. Front Behav Neurosci 8.  https://doi.org/10.3389/fnbeh.2014.00064
  102. Huerta PT, Lisman JE (1995) Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron 15:1053–1063.  https://doi.org/10.1016/0896-6273(95)90094-2 CrossRefPubMedGoogle Scholar
  103. Huh CYL, Goutagny R, Williams S (2010) Glutamatergic neurons of the mouse medial septum and diagonal band of Broca synaptically drive hippocampal pyramidal cells: relevance for hippocampal theta rhythm. J Neurosci 30:15951–15961.  https://doi.org/10.1523/JNEUROSCI.3663-10.2010 CrossRefPubMedGoogle Scholar
  104. Hyman JM, Wyble BP, Goyal V et al (2003) Stimulation in hippocampal region CA1 in behaving rats yields long-term potentiation when delivered to the peak of theta and long-term depression when delivered to the trough. J Neurosci 23:11725–11731CrossRefGoogle Scholar
  105. Iaccarino HF, Singer AC, Martorell AJ et al (2016) Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540:230–235.  https://doi.org/10.1038/nature20587 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Isomura Y, Sirota A, Özen S et al (2006) Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron 52:871–882.  https://doi.org/10.1016/j.neuron.2006.10.023 CrossRefPubMedGoogle Scholar
  107. Izquierdo A (2006) Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice. J Neurosci 26:5733–5738.  https://doi.org/10.1523/JNEUROSCI.0474-06.2006 CrossRefPubMedGoogle Scholar
  108. Jacinto LR, Reis JS, Dias NS et al (2013) Stress affects theta activity in limbic networks and impairs novelty-induced exploration and familiarization. Front Behav Neurosci 7:1–11.  https://doi.org/10.3389/fnbeh.2013.00127 CrossRefGoogle Scholar
  109. Jacinto LR, Cerqueira JJ, Sousa N (2016) Patterns of theta activity in limbic anxiety circuit preceding exploratory behavior in approach-avoidance conflict. Front Behav Neurosci 10.  https://doi.org/10.3389/fnbeh.2016.00171
  110. Jarosiewicz B, McNaughton BL, Skaggs WE (2002) Hippocampal population activity during the small-amplitude irregular activity state in the rat. J Neurosci 22:1373–1384CrossRefGoogle Scholar
  111. Jin J, Maren S (2015) Prefrontal-hippocampal interactions in memory and emotion. Front Syst Neurosci 9:1–8.  https://doi.org/10.3389/fnsys.2015.00170 CrossRefGoogle Scholar
  112. Joëls M, Baram TZ (2009) The neuro-symphony of stress. Nat Rev Neurosci 10:459–466.  https://doi.org/10.1038/nrn2632 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Jouvet M (1969) Biogenic amines and the states of sleep. Science 163:32–41CrossRefGoogle Scholar
  114. Jovanovic T, Norrholm SD, Blanding NQ et al (2010) Impaired fear inhibition is a biomarker of PTSD but not depression. Depress Anxiety 27:244–251.  https://doi.org/10.1002/da.20663 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Kametani H, Kawamura H (1990) Alterations in acetylcholine release in the rat hippocampus during sleep-wakefulness detected by intracerebral dialysis. 47:421–426Google Scholar
  116. Karalis N, Dejean C, Chaudun F et al (2016) 4-Hz oscillations synchronize prefrontal–amygdala circuits during fear behavior. Nat Neurosci 19:605–612.  https://doi.org/10.1038/nn.4251 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Karunakaran S, Chowdhury A, Donato F et al (2016) PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation. Nat Neurosci 19:454–464.  https://doi.org/10.1038/nn.4231 CrossRefPubMedGoogle Scholar
  118. Khemka S, Barnes G, Dolan RJ, Bach DR (2017) Dissecting the function of hippocampal oscillations in a human anxiety model. J Neurosci 37:6869–6876.  https://doi.org/10.1523/JNEUROSCI.1834-16.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Kim J, Kwon J-T, Kim H-S et al (2013) Memory recall and modifications by activating neurons with elevated CREB. Nat Neurosci 17:65–72.  https://doi.org/10.1038/nn.3592 CrossRefPubMedGoogle Scholar
  120. King C, Henze D, Leinekugel X, Buzsáki G (1999) Hebbian modification of a hippocampal population pattern in the rat. J Physiol 521:159–167.  https://doi.org/10.1111/j.1469-7793.1999.00159.x CrossRefPubMedPubMedCentralGoogle Scholar
  121. Kitamura T, Ogawa SK, Roy DS et al (2017) Engrams and circuits crucial for systems consolidation of a memory. Science (80- ) 356:73–78.  https://doi.org/10.1126/science.aam6808 CrossRefGoogle Scholar
  122. Kjelstrup KG, Tuvnes FA, Steffenach H-A et al (2002) Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci 99:10825–10830.  https://doi.org/10.1073/pnas.152112399 CrossRefPubMedGoogle Scholar
  123. Knapska E, Macias M, Mikosz M et al (2012) Functional anatomy of neural circuits regulating fear and extinction. Proc Natl Acad Sci 109:17093–17098.  https://doi.org/10.1073/pnas.1202087109 CrossRefPubMedGoogle Scholar
  124. Kobayashi I, Boarts JM, Delahanty DL (2007) Polysomnographically measured sleep abnormalities in PTSD: a meta-analytic review. Psychophysiology 44:660–669.  https://doi.org/10.1111/j.1469-8986.2007.537.x CrossRefPubMedGoogle Scholar
  125. Korotkova T, Ponomarenko A, Monaghan CK et al (2018) Reconciling the different faces of hippocampal theta: the role of theta oscillations in cognitive, emotional and innate behaviors. Neurosci Biobehav Rev 85:65–80.  https://doi.org/10.1016/j.neubiorev.2017.09.004 CrossRefPubMedGoogle Scholar
  126. Kramis R, Vanderwolf CH, Bland BH (1975) Two types of hippocampal rhythmical slow activity in both the rabbit and the rat : relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. 49:58–85Google Scholar
  127. Kudrimoti HS, Barnes CA, McNaughton BL (1999) Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci 19:4090–4101CrossRefGoogle Scholar
  128. Ledoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184CrossRefGoogle Scholar
  129. Lee MG, Chrobak JJ, Sik A et al (1994) Hippocampal theta activity following selective lesion of the septal cholinergic system. Neurosci 62:1033–1047CrossRefGoogle Scholar
  130. Lesting J, Geiger M, Narayanan RT, et al (2011a) Impaired extinction of fear and maintained amygdala-hippocampal theta synchrony in a mouse model of temporal lobe epilepsy. Epilepsia 52:337–346.  https://doi.org/10.1111/j.1528-1167.2010.02758.x
  131. Lesting J, Narayanan RT, Kluge C et al (2011b) Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction. PLoS One 6.  https://doi.org/10.1371/journal.pone.0021714
  132. Lesting J, Daldrup T, Narayanan V et al (2013) Directional theta coherence in prefrontal cortical to amygdalo-hippocampal pathways signals fear extinction. PLoS One 8:17–19.  https://doi.org/10.1371/journal.pone.0077707 CrossRefGoogle Scholar
  133. Li WJ, Yu H, Yang JM et al (2010) Anxiolytic effect of music exposure on BDNFMet/Mettransgenic mice. Brain Res 1347:71–79.  https://doi.org/10.1016/j.brainres.2010.05.080 CrossRefPubMedGoogle Scholar
  134. Likhtik E, Stujenske JM, A Topiwala M et al (2014) Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat Neurosci 17:106–113.  https://doi.org/10.1038/nn.3582 CrossRefPubMedGoogle Scholar
  135. Liu X, Ramirez S, Pang PT et al (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381–385.  https://doi.org/10.1038/nature11028 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Maggio N, Segal M (2011) Persistent changes in ability to express long-term potentiation/depression in the rat hippocampus after juvenile/adult stress. Biol Psychiatry 69:748–753.  https://doi.org/10.1016/j.biopsych.2010.11.026 CrossRefPubMedGoogle Scholar
  137. Maingret N, Girardeau G, Todorova R et al (2016) Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat Neurosci 19:959–964.  https://doi.org/10.1038/nn.4304 http://www.nature.com/neuro/journal/v19/n7/abs/nn.4304.html#supplementary-information CrossRefPubMedGoogle Scholar
  138. Mann EO, Suckling JM, Hajos N et al (2005) Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro. Neuron 45:105–117.  https://doi.org/10.1016/j.neuron.2004.12.016 CrossRefPubMedGoogle Scholar
  139. Marek R, Jin J, Goode TD et al (2018) Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nat Neurosci 21:1–9.  https://doi.org/10.1038/s41593-018-0073-9 CrossRefGoogle Scholar
  140. Maren S, Holmes A (2015) Stress and fear extinction. Neuropsychopharmacology 41:1–22.  https://doi.org/10.1038/npp.2015.180 CrossRefGoogle Scholar
  141. Maren S, Holt W (2000) The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behav Brain Res 110:97–108.  https://doi.org/10.1016/S0166-4328(99)00188-6 CrossRefGoogle Scholar
  142. Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5:844–852.  https://doi.org/10.1038/nrn1535 CrossRefPubMedGoogle Scholar
  143. Maren S, Phan KL, Liberzon I (2013) The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 14:417–428.  https://doi.org/10.1038/nrn3492 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Maroun M, Richter-Levin G (2003) Exposure to acute stress blocks the induction of long-term potentiation of the amygdala-prefrontal cortex pathway in vivo. J Neurosci 23:4406–4409CrossRefGoogle Scholar
  145. Marrosu F, Portas C, Mascia MS et al (1995) Microdialysis measurement of cortical and hippocampal acetylcholine-release during sleep-wake cycle in freely moving cats. Brain Res 671:329–332.  https://doi.org/10.1016/0006-8993(94)01399-3 CrossRefPubMedGoogle Scholar
  146. McGaugh JL (2000) Neuroscience - memory - a century of consolidation. Science 287:248–251.  https://doi.org/10.1126/science.287.5451.248 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Mizunuma M, Norimoto H, Tao K et al (2014) Unbalanced excitability underlies offline reactivation of behaviorally activated neurons. Nat Neurosci 17:503–505.  https://doi.org/10.1038/nn.3674 CrossRefPubMedGoogle Scholar
  148. Montgomery SM, Buzsáki G (2007) Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc Natl Acad Sci U S A 104:14495–14500.  https://doi.org/10.1073/pnas.0701826104 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12:120–150.  https://doi.org/10.1038/sj.mp.4001939 CrossRefPubMedGoogle Scholar
  150. Naber PA, Witter MP (1998) Subicular efferents are organized mostly as parallel projections: a double-labeling, retrograde-tracing study in the rat. J Comp Neurol 393:284–297.  https://doi.org/10.1002/(SICI)1096-9861(19980413)393:3<284::AID-CNE2>3.0.CO;2-Y CrossRefPubMedGoogle Scholar
  151. Nader K, Schafe GE, LeDoux JE (2000) The labile nature of consolidation theory. Nat Rev Neurosci 1:216–219.  https://doi.org/10.1038/35044580 CrossRefGoogle Scholar
  152. Narayanan RT, Seidenbecher T, Kluge C et al (2007) Dissociated theta phase synchronization in amygdalo-hippocampal circuits during various stages of fear memory. Eur J Neurosci 25:1823–1831.  https://doi.org/10.1111/j.1460-9568.2007.05437.x CrossRefPubMedGoogle Scholar
  153. Neske GT (2015) The slow oscillation in cortical and thalamic networks: mechanisms and functions. Front Neural Circuits 9(88).  https://doi.org/10.3389/fncir.2015.00088
  154. Neylan TC, Lenoci M, Maglione ML et al (2003) Delta sleep response to metyrapone in post-traumatic stress disorder. Neuropsychopharmacology 28:1666–1676.  https://doi.org/10.1038/sj.npp.1300215 CrossRefGoogle Scholar
  155. Nikolić D, Fries P, Singer W (2013) Gamma oscillations: precise temporal coordination without a metronome. Trends Cogn Sci 17:54–55.  https://doi.org/10.1016/j.tics.2012.12.003 CrossRefPubMedGoogle Scholar
  156. Ognjanovski N, Maruyama D, Lashner N et al (2014) CA1 hippocampal network activity changes during sleep-dependent memory consolidation. Front Syst Neurosci 8:1–11.  https://doi.org/10.3389/fnsys.2014.00061 CrossRefGoogle Scholar
  157. Ognjanovski N, Schaeffer S, Wu J et al (2017) Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation. Nat Commun 8:15039.  https://doi.org/10.1038/ncomms15039 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Ognjanovski N, Broussard C, Zochowski M, Aton SJ (2018) Hippocampal network oscillations rescue memory consolidation deficits caused by sleep loss. Cereb Cortex:1–13.  https://doi.org/10.1093/cercor/bhy174
  159. Olsen RHJ, Marzulla T, Raber J (2014) Impairment in extinction of contextual and cued fear following post-training whole-body irradiation. Front Behav Neurosci 8:1–13.  https://doi.org/10.3389/fnbeh.2014.00231 CrossRefGoogle Scholar
  160. Padilla-Coreano N, Bolkan SS, Pierce GM et al (2016) Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron 89:857–866.  https://doi.org/10.1016/j.neuron.2016.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Papadimitriou GN, Linkowski P (2005) Sleep disturbance in anxiety disorders. Int Rev Psychiatry 17:229–236.  https://doi.org/10.1080/09540260500104524 CrossRefPubMedGoogle Scholar
  162. Pape HC, Narayanan RT, Smid J et al (2005) Theta activity in neurons and networks of the amygdala related to long-term fear memory. Hippocampus 15:874–880.  https://doi.org/10.1002/hipo.20120 CrossRefPubMedGoogle Scholar
  163. Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56:141–154.  https://doi.org/10.1016/j.neuron.2007.08.025 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Patel J, Fujisawa S, Berényi A et al (2012) Traveling theta waves along the entire septotemporal axis of the hippocampus. Neuron 75:410–417.  https://doi.org/10.1016/j.neuron.2012.07.015 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Patel D, Anilkumar S, Chattarji S, Buwalda B (2018) Repeated social stress leads to contrasting patterns of structural plasticity in the amygdala and hippocampus. Behav Brain Res 347:314–324.  https://doi.org/10.1016/j.bbr.2018.03.034 CrossRefPubMedGoogle Scholar
  166. Pellow S, Chopin P, File SE, Briley M (1985) Validation of open : closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167.  https://doi.org/10.1016/0165-0270(85)90031-7 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Petsche H, Stumpf C, Gogolak G (1962) The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus. I. The control of hippocampus arousal activity by the septum cells. Electroencephalogr Clin Neurophysiol 14:202–211CrossRefGoogle Scholar
  168. Phelps EA (2004) Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 14:198–202.  https://doi.org/10.1016/j.conb.2004.03.015 CrossRefPubMedGoogle Scholar
  169. Pikkarainen M, Rönkkö S, Savander V et al (1999) Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey. J Comp Neurol 403:229–260.  https://doi.org/10.1002/hipo.1099 CrossRefPubMedGoogle Scholar
  170. Popa D, Duvarci S, Popescu AT et al (2010) Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci 107:6516–6519.  https://doi.org/10.1073/pnas.0913016107 CrossRefPubMedGoogle Scholar
  171. Prasad JA, Chudasama Y (2013) Viral tracing identifies parallel disynaptic pathways to the hippocampus. J Neurosci 33:8494–8503.  https://doi.org/10.1523/JNEUROSCI.5072-12.2013 CrossRefPubMedGoogle Scholar
  172. Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72.  https://doi.org/10.1038/sj.npp.1301555 CrossRefPubMedGoogle Scholar
  173. Ramirez S, Liu X, Lin P-A et al (2013) Creating a false memory in the hippocampus. Science (80- ) 341:387–391.  https://doi.org/10.1126/science.1239073 CrossRefGoogle Scholar
  174. Raza SA, Albrecht A, Çalışkan G et al (2017) HIPP neurons in the dentate gyrus mediate the cholinergic modulation of background context memory salience. Nat Commun 8:189.  https://doi.org/10.1038/s41467-017-00205-3 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Reijmers LG, Perkins BL, Matsuo N, Mayford M (2007) Localization of a stable neural correlate of associative memory. Science (80- ) 317:1230–1233.  https://doi.org/10.1126/science.1143839 CrossRefGoogle Scholar
  176. Royer S, Sirota A, Patel J, Buzsáki G (2012) Distinct representations and theta dynamics in dorsal and ventral hippocampus. 76:211–220.  https://doi.org/10.1523/JNEUROSCI.4681-09.2010
  177. Sadowski JHLP, Jones MW, Mellor JR et al (2016) Sharp-wave ripples orchestrate the induction of synaptic plasticity during reactivation of place cell firing patterns in the hippocampus. Cell Rep 14:1916–1929.  https://doi.org/10.1016/j.celrep.2016.01.061 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Sampath D, Sabitha KR, Hegde P et al (2014) A study on fear memory retrieval and REM sleep in maternal separation and isolation stressed rats. Behav Brain Res 273:144–154.  https://doi.org/10.1016/j.bbr.2014.07.034 CrossRefPubMedGoogle Scholar
  179. Sangha S, Narayanan RT, Bergado-Acosta JR et al (2009) Deficiency of the 65 kDa isoform of glutamic acid decarboxylase impairs extinction of cued but not contextual fear memory. J Neurosci 29:15713–15720.  https://doi.org/10.1523/JNEUROSCI.2620-09.2009 CrossRefPubMedGoogle Scholar
  180. Satpute AB, Mumford JA, Naliboff BD, Poldrack RA (2012) Human anterior and posterior hippocampus respond distinctly to state and trait anxiety. Emotion 12:58–68.  https://doi.org/10.1037/a0026517 CrossRefPubMedGoogle Scholar
  181. Schlingloff D, Kali S, Freund TF et al (2014) Mechanisms of sharp wave initiation and ripple generation. J Neurosci 34:11385–11398.  https://doi.org/10.1523/JNEUROSCI.0867-14.2014 CrossRefPubMedGoogle Scholar
  182. Segal M, Richter-Levin G, Maggio N (2010) Stress-induced dynamic routing of hippocampal connectivity: a hypothesis. Hippocampus 20:1332–1338.  https://doi.org/10.1002/hipo.20751 CrossRefPubMedGoogle Scholar
  183. Seidenbecher T, Laxmi TR, Stork O, Pape HC (2003) Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science (80- ) 301:846–850.  https://doi.org/10.1126/science.1085818 CrossRefGoogle Scholar
  184. Senn V, Wolff SBE, Herry C et al (2014) Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81:428–437.  https://doi.org/10.1016/j.neuron.2013.11.006 CrossRefGoogle Scholar
  185. Shors TJ, Seib TB, Levine S, Thompson RF (1989) Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science 244:224–226.  https://doi.org/10.1126/science.2704997 CrossRefGoogle Scholar
  186. Siapas AG, Lubenov EV, Wilson MA (2005) Prefrontal phase locking to hippocampal theta oscillations. Neuron 46:141–151.  https://doi.org/10.1016/j.neuron.2005.02.028 CrossRefPubMedGoogle Scholar
  187. Siegle JS, Pritschett DL, Moore CI (2014) Gamma-range synchronization of fast-spiking interneurons can enhance detection of tactile stimuli. Nat Neurosci 17:1371–1379.  https://doi.org/10.1038/nn.3797 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Sirota A, Csicsvari J, Buhl D, Buzsáki G (2003) Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci U S A 100:2065–2069.  https://doi.org/10.1073/pnas.0437938100 CrossRefPubMedPubMedCentralGoogle Scholar
  189. Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:1–5.  https://doi.org/10.1038/nature07991 CrossRefGoogle Scholar
  190. Soliman F, Glatt CE, Bath KG et al (2010) A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science 327:863–866CrossRefGoogle Scholar
  191. Sotres-Bayon F, Sierra-Mercado D, Pardilla-Delgado E, Quirk GJ (2012) Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron 76:804–812.  https://doi.org/10.1016/j.neuron.2012.09.028 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Stark E, Roux L, Eichler R et al (2014) Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations. Neuron 83:467–480.  https://doi.org/10.1016/j.neuron.2014.06.023 CrossRefPubMedPubMedCentralGoogle Scholar
  193. Strange BA, Witter MP, Lein ES, Moser EI (2014) Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 15:655–669.  https://doi.org/10.1038/nrn3785 CrossRefPubMedGoogle Scholar
  194. Stujenske JM, Likhtik E, Topiwala MA, Gordon JA (2014) Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala. Neuron 83:919–933.  https://doi.org/10.1016/j.neuron.2014.07.026 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Sylvers P, Lilienfeld SO, LaPrairie JL (2011) Differences between trait fear and trait anxiety: implications for psychopathology. Clin Psychol Rev 31:122–137.  https://doi.org/10.1016/j.cpr.2010.08.004 CrossRefPubMedGoogle Scholar
  196. Takahashi K, Kayama Y, Lin JS, Sakai K (2010) Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience 169:1115–1126.  https://doi.org/10.1016/j.neuroscience.2010.06.009 CrossRefPubMedGoogle Scholar
  197. Totty MS, Chesney LA, Geist PA, Datta S (2017) Sleep-dependent oscillatory synchronization: a role in fear memory consolidation. Front Neural Circuits 11:1–13.  https://doi.org/10.3389/fncir.2017.00049 CrossRefGoogle Scholar
  198. Tovote P, Fadok JP, Lüthi A (2015) Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16:317–331.  https://doi.org/10.1038/nrn3945 CrossRefPubMedGoogle Scholar
  199. Tronson NC, Taylor JR (2007) Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 8:262–275.  https://doi.org/10.1038/nrn2090 CrossRefPubMedGoogle Scholar
  200. Tronson NC, Schrick C, Guzman YF et al (2009) Segregated populations of hippocampal principal CA1 neurons mediating conditioning and extinction of contextual fear. J Neurosci 29:3387–3394.  https://doi.org/10.1523/JNEUROSCI.5619-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  201. Unal G, Joshi A, Viney TJ et al (2015) Synaptic targets of medial septal projections in the hippocampus and extrahippocampal cortices of the mouse. J Neurosci 35:15812–15826.  https://doi.org/10.1523/JNEUROSCI.2639-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Van Groen T, Wyss JM (1990) Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections. J Comp Neurol 302:515–528.  https://doi.org/10.1002/cne.903020308 CrossRefPubMedGoogle Scholar
  203. Vandecasteele M, Varga V, Berényi A et al (2014) Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proc Natl Acad Sci U S A 111:13535–13540.  https://doi.org/10.1073/pnas.1411233111 CrossRefPubMedPubMedCentralGoogle Scholar
  204. Vanderwolf C (1969) Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 26:407–418CrossRefGoogle Scholar
  205. VanElzakker MB, Kathryn Dahlgren M, Caroline Davis F et al (2014) From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol Learn Mem 113:3–18.  https://doi.org/10.1016/j.nlm.2013.11.014 CrossRefPubMedGoogle Scholar
  206. Varela C, Kumar S, Yang JY, Wilson MA (2014) Anatomical substrates for direct interactions between hippocampus, medial prefrontal cortex, and the thalamic nucleus reuniens. Brain Struct Funct 219:911–929.  https://doi.org/10.1007/s00429-013-0543-5 CrossRefPubMedGoogle Scholar
  207. Viriyopase A, Memmesheimer R-M, Gielen S (2016) Cooperation and competition of gamma oscillation mechanisms. J Neurophysiol.  https://doi.org/10.1152/jn.00493.2015
  208. Wang X, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402–6413CrossRefGoogle Scholar
  209. Watanabe Y, Gould E, McEwen BS (1992) Stress induces atrophy of apical dendrites of hippocampus CA3 pyramidal neurons. Brain Res 588:341–344CrossRefGoogle Scholar
  210. Whittington MA, Traub RD, Kopell N et al (2000) Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol 38:315–336.  https://doi.org/10.1016/S0167-8760(00)00173-2 CrossRefPubMedGoogle Scholar
  211. Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science (80- ) 265:676–679.  https://doi.org/10.1126/science.8036517 CrossRefGoogle Scholar
  212. Winkelmann A, Maggio N, Eller J et al (2014) Changes in neural network homeostasis trigger neuropsychiatric symptoms. J Clin Invest 124.  https://doi.org/10.1172/JCI71472
  213. Wójtowicz AM, Van Den Boom L, Chakrabarty A et al (2009) Monoamines block kainate- and carbachol-induced. γ-oscillations but augment stimulus-induced γ-oscillations in rat hippocampus in vitro. Hippocampus 19:273–288.  https://doi.org/10.1002/hipo.20508 CrossRefPubMedGoogle Scholar
  214. Wolansky T, Clement EA, Peters SR et al (2006) Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity. J Neurosci 26:6213–6229.  https://doi.org/10.1523/JNEUROSCI.5594-05.2006 CrossRefPubMedGoogle Scholar
  215. Woodward SH, Murburg MM, Bliwise DL (2000) PTSD-related hyperarousal assessed during sleep. Physiol Behav 70:197–203.  https://doi.org/10.1016/S0031-9384(00)00271-7 CrossRefGoogle Scholar
  216. Xia F, Richards BA, Tran MM et al (2017) Parvalbumin-positive interneurons mediate neocortical-hippocampal interactions that are necessary for memory consolidation. Elife 6:1–25.  https://doi.org/10.7554/eLife.27868 CrossRefGoogle Scholar
  217. Xu C, Krabbe S, Gründemann J et al (2016) Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. Cell 167:961–972.e16.  https://doi.org/10.1016/j.cell.2016.09.051
  218. Ylinen A, Bragin A, Nádasdy Z et al (1995) Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15:30–46.  https://doi.org/10.1038/17605 CrossRefGoogle Scholar
  219. Yu H, Wang Y, Pattwell S et al (2009) Variant BDNF Val66Met polymorphism affects extinction of conditioned aversive memory. J Neurosci 29:4056–4064.  https://doi.org/10.1523/JNEUROSCI.5539-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  220. Zeitlin R, Patel S, Solomon R et al (2012) Cotinine enhances the extinction of contextual fear memory and reduces anxiety after fear conditioning. Behav Brain Res 228:284–293.  https://doi.org/10.1016/j.bbr.2011.11.023 CrossRefPubMedGoogle Scholar
  221. Zhang H, Lin S-C, Nicolelis MAL (2010) Spatiotemporal coupling between hippocampal acetylcholine release and theta oscillations in vivo. J Neurosci 30:13431–13440.  https://doi.org/10.1523/JNEUROSCI.1144-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  222. Zheng J, Anderson KL, Leal SL et al (2017) Amygdala-hippocampal dynamics during salient information processing. Nat Commun 8:14413.  https://doi.org/10.1038/ncomms14413 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Genetics & Molecular Neurobiology, Institute of BiologyOtto-von-Guericke-University MagdeburgMagdeburgGermany
  2. 2.Center for Behavioral Brain SciencesMagdeburgGermany

Personalised recommendations