Advertisement

Psychopharmacology

, Volume 236, Issue 1, pp 463–477 | Cite as

Role of prefrontal cortex in the extinction of drug memories

  • Wen-Hua Zhang
  • Ke-Xin Cao
  • Zeng-Bo Ding
  • Jian-Li Yang
  • Bing-Xing PanEmail author
  • Yan-Xue XueEmail author
Review
  • 246 Downloads

Abstract

It has been recognized that drug addiction engages aberrant process of learning and memory, and substantial studies have focused on developing effective treatment to erase the enduring drug memories to reduce the propensity to relapse. Extinction, a behavioral intervention exposing the individuals to the drug-associated cues repeatedly, can weaken the craving and relapse induced by drug-associated cues, but its clinic efficacy is limited. A clear understanding of the neuronal circuitry and molecular mechanism underlying extinction of drug memory will facilitate the successful use of extinction therapy in clinic. As a key component of mesolimbic system, medial prefrontal cortex (mPFC) has received particular attention largely in that PFC stands at the core of neural circuits for memory extinction and manipulating mPFC influences extinction of drug memories and subsequent relapse. Here, we review the recent advances in both animal models of drug abuse and human addicted patients toward the understanding of the mechanistic link between mPFC and drug memory, with particular emphasis on how mPFC contributes to the extinction of drug memory at levels ranging from neuronal architecture, synaptic plasticity to molecular signaling and epigenetic regulation, and discuss the clinic relevance of manipulating the extinction process of drug memory to prevent craving and relapse through enhancing mPFC function.

Keywords

Drug memory Prefrontal cortex Extinction Relapse 

Notes

Funding information

This work was supported by grants from the National Basic Research Program of China (2014CB846100, 2015CB559200), National Natural Science Foundation of China (81601179, 81503079, 81741759, 31700916), and the National Program for Support of Top-notch Young Professionals and Natural Science Foundation of Jiangxi Province (20143ACB21002, 20172BCB22005, KJLD14013, 20161BAB215204).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abulseoud OA, Miller JD, Wu J, Choi DS, Holschneider DP (2012) Ceftriaxone upregulates the glutamate transporter in medial prefrontal cortex and blocks reinstatement of methamphetamine seeking in a condition place preference paradigm. Brain Res 1456:14–21.  https://doi.org/10.1016/j.brainres.2012.03.045 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alvarez-Jaimes L, Polis I, Parsons LH (2008) Attenuation of cue-induced heroin-seeking behavior by cannabinoid CB1 antagonist infusions into the nucleus accumbens core and prefrontal cortex, but not basolateral amygdala. Neuropsychopharmacology 33:2483–2493.  https://doi.org/10.1038/sj.npp.1301630 CrossRefPubMedGoogle Scholar
  3. Anier K, Malinovskaja K, Aonurm-Helm A, Zharkovsky A, Kalda A (2010) DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology 35:2450–2461.  https://doi.org/10.1038/npp.2010.128 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Augur IF, Wyckoff AR, Aston-Jones G, Kalivas PW, Peters J (2016) Chemogenetic activation of an extinction neural circuit reduces Cue-induced reinstatement of cocaine seeking. J Neurosci 36:10174–10180.  https://doi.org/10.1523/JNEUROSCI.0773-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baler RD, Volkow ND (2006) Drug addiction: the neurobiology of disrupted self-control. Trends Mol Med 12:559–566.  https://doi.org/10.1016/j.molmed.2006.10.005 CrossRefPubMedGoogle Scholar
  6. Batista EK, Klauss J, Fregni F, Nitsche MA, Nakamura-Palacios EM (2015) A randomized placebo-controlled trial of targeted prefrontal cortex modulation with bilateral tDCS in patients with crack-cocaine dependence. Int J Neuropsychopharmacol 18(12):pyv066.  https://doi.org/10.1093/ijnp/pyv066 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bellamoli E, Manganotti P, Schwartz RP, Rimondo C, Gomma M, Serpelloni G (2014) rTMS in the treatment of drug addiction: an update about human studies. Behav Neurol 2014:815215–815211.  https://doi.org/10.1155/2014/815215 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ben-Menachem E, Revesz D, Simon BJ, Silberstein S (2015) Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability. Eur J Neurol 22:1260–1268.  https://doi.org/10.1111/ene.12629 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ben-Shahar O, Sacramento AD, Miller BW, Webb SM, Wroten MG, Silva HE, Caruana AL, Gordon EJ, Ploense KL, Ditzhazy J, Kippin TE, Szumlinski KK (2013) Deficits in ventromedial prefrontal cortex group 1 metabotropic glutamate receptor function mediate resistance to extinction during protracted withdrawal from an extensive history of cocaine self-administration. J Neurosci 33:495–506.  https://doi.org/10.1523/jneurosci.3710-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Berglind WJ, See RE, Fuchs RA, Ghee SM, Whitfield TW Jr, Miller SW, McGinty JF (2007) A BDNF infusion into the medial prefrontal cortex suppresses cocaine seeking in rats. Eur J Neurosci 26:757–766.  https://doi.org/10.1111/j.1460-9568.2007.05692.x CrossRefPubMedGoogle Scholar
  11. Berglind WJ, Whitfield TW Jr, LaLumiere RT, Kalivas PW, McGinty JF (2009) A single intra-PFC infusion of BDNF prevents cocaine-induced alterations in extracellular glutamate within the nucleus accumbens. J Neurosci 29:3715–3719.  https://doi.org/10.1523/JNEUROSCI.5457-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Beylergil SB, Beck A, Deserno L, Lorenz RC, Rapp MA, Schlagenhauf F, Heinz A, Obermayer K (2017) Dorsolateral prefrontal cortex contributes to the impaired behavioral adaptation in alcohol dependence. Neuroimage Clin 15:80–94.  https://doi.org/10.1016/j.nicl.2017.04.010 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Blouin AM, Han S, Pearce AM, Cheng K, Lee JJ, Johnson AW, Wang C, During MJ, Holland PC, Shaham Y, Baraban JM, Reti IM (2013a) Role of medial prefrontal cortex Narp in the extinction of morphine conditioned place preference. Learn Mem 20:75–79.  https://doi.org/10.1101/lm.028621.112 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Blouin AM, Stern AL, Han S, Theberge FR, Wang C, During MJ, Baraban JM, Reti IM (2013b) Neuronal activity-regulated pentraxin expressed in medial prefrontal cortex neurons is not necessary for extinction of heroin self-administration. Behav Pharmacol 24:332–336.  https://doi.org/10.1097/FBP.0b013e328363367b CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bossert JM, Stern AL, Theberge FR, Cifani C, Koya E, Hope BT, Shaham Y (2011) Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nat Neurosci 14:420–422.  https://doi.org/10.1038/nn.2758 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bossert JM, Marchant NJ, Calu DJ, Shaham Y (2013) The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacology 229:453–476.  https://doi.org/10.1007/s00213-013-3120-y CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11:485–494.  https://doi.org/10.1101/lm.78804 CrossRefPubMedGoogle Scholar
  18. Bouton ME, King DA (1983) Contextual control of the extinction of conditioned fear: tests for the associative value of the context. J Exp Psychol Anim Behav Process 9:248–265.  https://doi.org/10.1037/0097-7403.9.3.248 CrossRefPubMedGoogle Scholar
  19. Brenhouse HC, Dumais K, Andersen SL (2010) Enhancing the salience of dullness: behavioral and pharmacological strategies to facilitate extinction of drug-cue associations in adolescent rats. Neuroscience 169:628–636.  https://doi.org/10.1016/j.neuroscience.2010.05.063 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Burattini C, Burbassi S, Aicardi G, Cervo L (2007) Effects of naltrexone on cocaine- and sucrose-seeking behaviour in response to associated stimuli in rats. Int J Neuropsychopharmacol 11.  https://doi.org/10.1017/S1461145707007705
  21. Cannady R, McGonigal JT, Newsom RJ, Woodward JJ, Mulholland PJ, Gass JT (2017) Prefrontal cortex KCa2 channels regulate mGlu5-dependent plasticity and extinction of alcohol-seeking behavior. J Neurosci 37:4359–4369.  https://doi.org/10.1523/jneurosci.2873-16.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Castino MR, Baker-Andresen D, Ratnu VS, Shevchenko G, Morris KV, Bredy TW, Youngson NA, Clemens KJ (2018) Persistent histone modifications at the BDNF and Cdk-5 promoters following extinction of nicotine-seeking in rats. Genes Brain Behav 17:98–106.  https://doi.org/10.1111/gbb.12421 CrossRefPubMedGoogle Scholar
  23. Chen W, Wang Y, Sun A, Zhou L, Xu W, Zhu H, Zhuang D, Lai M, Zhang F, Zhou W, Liu H (2016) Activation of AMPA receptor in the infralimbic cortex facilitates extinction and attenuates the heroin-seeking behavior in rats. Neurosci Lett 612:126–131.  https://doi.org/10.1016/j.neulet.2015.11.024 CrossRefPubMedGoogle Scholar
  24. Childs JE, DeLeon J, Nickel E, Kroener S (2017) Vagus nerve stimulation reduces cocaine seeking and alters plasticity in the extinction network. Learn Mem 24:35–42.  https://doi.org/10.1101/lm.043539.116 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ciccocioppo R, Lin D, Martin-Fardon R, Weiss F (2003) Reinstatement of ethanol-seeking behavior by drug cues following single versus multiple ethanol intoxication in the rat: effects of naltrexone. Psychopharmacology 168:208–215.  https://doi.org/10.1007/s00213-002-1380-z
  26. Conde F, Maire-Lepoivre E, Audinat E, Crepel F (1995) Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol 352:567–593.  https://doi.org/10.1002/cne.903520407 CrossRefPubMedGoogle Scholar
  27. Conklin CA, Tiffany ST (2002) Applying extinction research and theory to cue-exposure addiction treatments. Addiction 97:155–167.  https://doi.org/10.1046/j.1360-0443.2002.00014.x CrossRefPubMedGoogle Scholar
  28. Crombag HS, Bossert JM, Koya E, Shaham Y (2008) Context-induced relapse to drug seeking: a review. Philos Trans R Soc Lond Ser B Biol Sci 363:3233–3243.  https://doi.org/10.1098/rstb.2008.0090 CrossRefGoogle Scholar
  29. Crombag HS, Dickson M, Dinenna M, Johnson AW, Perin MS, Holland PC, Baraban JM, Reti IM (2009) Narp deletion blocks extinction of morphine place preference conditioning. Neuropsychopharmacology 34:857–866.  https://doi.org/10.1038/npp.2008.80 CrossRefPubMedGoogle Scholar
  30. Cruz FC, Koya E, Guez-Barber DH, Bossert JM, Lupica CR, Shaham Y, Hope BT (2013) New technologies for examining neuronal ensembles in drug addiction and fear. Nat Rev Neurosci 14:743–754.  https://doi.org/10.1038/nrn3597 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Cunningham CL, Gremel CM, Groblewski PA (2006) Drug-induced conditioned place preference and aversion in mice. Nat Protoc 1:1662–1670.  https://doi.org/10.1038/nprot.2006.279 CrossRefPubMedGoogle Scholar
  32. Degoulet M, Stelly CE, Ahn KC, Morikawa H (2016) L-type Ca(2)(+) channel blockade with antihypertensive medication disrupts VTA synaptic plasticity and drug-associated contextual memory. Mol Psychiatry 21:394–402.  https://doi.org/10.1038/mp.2015.84 CrossRefPubMedGoogle Scholar
  33. Di Ciano P, Everitt BJ (2002) Reinstatement and spontaneous recovery of cocaine-seeking following extinction and different durations of withdrawal. Behav Pharmacol 13:397–405.  https://doi.org/10.1097/00008877-200209000-00013
  34. Epstein DH, Preston KL, Stewart J, Shaham Y (2006) Toward a model of drug relapse: an assessment of the validity of the reinstatement procedure. Psychopharmacology 189:1–16.  https://doi.org/10.1007/s00213-006-0529-6 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489.  https://doi.org/10.1038/nn1579 CrossRefPubMedGoogle Scholar
  36. Franklin TR, Acton PD, Maldjian JA, Gray JD, Croft JR, Dackis CA, O'Brien CP, Childress AR (2002) Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol Psychiatry 51:134–142.  https://doi.org/10.1016/S0006-3223(01)01269-0
  37. Fuchs RA, Ramirez DR, Bell GH (2008) Nucleus accumbens shell and core involvement in drug context-induced reinstatement of cocaine seeking in rats. Psychopharmacology 200:545–556.  https://doi.org/10.1007/s00213-008-1234-4 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gabbott PL, Warner TA, Jays PR, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492:145–177.  https://doi.org/10.1002/cne.20738 CrossRefPubMedGoogle Scholar
  39. Garrison KA, Potenza MN (2014) Neuroimaging and biomarkers in addiction treatment. Curr Psychiatry Rep 16:513.  https://doi.org/10.1007/s11920-014-0513-5 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Gass JT, Olive MF (2009) Positive allosteric modulation of mGluR5 receptors facilitates extinction of a cocaine contextual memory. Biol Psychiatry 65:717–720.  https://doi.org/10.1016/j.biopsych.2008.11.001
  41. Gass JT, Trantham-Davidson H, Kassab AS, Glen WB Jr, Olive MF, Chandler LJ (2014) Enhancement of extinction learning attenuates ethanol-seeking behavior and alters plasticity in the prefrontal cortex. J Neurosci 34:7562–7574.  https://doi.org/10.1523/jneurosci.5616-12.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Genheimer H, Andreatta M, Asan E, Pauli P (2017) Reinstatement of contextual conditioned anxiety in virtual reality and the effects of transcutaneous vagus nerve stimulation in humans. Sci Rep 7:17886.  https://doi.org/10.1038/s41598-017-18183-3 CrossRefPubMedPubMedCentralGoogle Scholar
  43. George O, Hope BT (2017) Cortical and amygdalar neuronal ensembles in alcohol seeking, drinking and withdrawal. Neuropharmacology 122:107–114.  https://doi.org/10.1016/j.neuropharm.2017.04.031 CrossRefPubMedPubMedCentralGoogle Scholar
  44. George O, Koob GF (2010) Individual differences in prefrontal cortex function and the transition from drug use to drug dependence. Neurosci Biobehav Rev 35:232–247.  https://doi.org/10.1016/j.neubiorev.2010.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Germeroth LJ, Carpenter MJ, Baker NL, Froeliger B, LaRowe SD, Saladin ME (2017) Effect of a brief memory updating intervention on smoking behavior: a randomized clinical trial. JAMA Psychiatry 74:214–223.  https://doi.org/10.1001/jamapsychiatry.2016.3148 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Goldstein RZ, Volkow ND (2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 12:652–669.  https://doi.org/10.1038/nrn3119 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Gorelick DA, Zangen A, George MS (2014) Transcranial magnetic stimulation (TMS) in the treatment of substance addiction. Ann N Y Acad Sci 1327:79–93.  https://doi.org/10.1111/nyas.12479 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gourley SL, Taylor JR (2016) Going and stopping: dichotomies in behavioral control by the prefrontal cortex. Nat Neurosci 19:656–664.  https://doi.org/10.1038/nn.4275 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gutman AL, Ewald VA, Cosme CV, Worth WR, LaLumiere RT (2017) The infralimbic and prelimbic cortices contribute to the inhibitory control of cocaine-seeking behavior during a discriminative stimulus task in rats. Addict Biol 22:1719–1730.  https://doi.org/10.1111/adb.12434 CrossRefPubMedGoogle Scholar
  50. Hafenbreidel M, Rafa Todd C, Mueller D (2017) Infralimbic GluN2A-containing NMDA receptors modulate reconsolidation of cocaine self-administration memory. Neuropsychopharmacology 42:1113–1125.  https://doi.org/10.1038/npp.2016.288 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Hamlin AS, Clemens KJ, McNally GP (2008) Renewal of extinguished cocaine-seeking. Neuroscience 151:659–670.  https://doi.org/10.1016/j.neuroscience.2007.11.018 CrossRefPubMedGoogle Scholar
  52. He Y-Y, Xue Y-X, J-s W, Fang Q, Liu J-F, Xue L-F, Lu L (2011) PKMζ maintains drug reward and aversion memory in the basolateral amygdala and extinction memory in the Infralimbic cortex. Neuropsychopharmacology 36:1972–1981.  https://doi.org/10.1038/npp.2011.63 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Heather N, Bradley BP (1990) Cue exposure as a practical treatment for addictive disorders: why are we waiting? Addict Behav 15:335–337.  https://doi.org/10.1016/0306-4603(90)90043-W CrossRefPubMedGoogle Scholar
  54. Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579.  https://doi.org/10.1016/j.neubiorev.2003.09.003 CrossRefPubMedGoogle Scholar
  55. Huang B, Li Y, Cheng D, He G, Liu X, Ma L (2018) β-Arrestin-biased beta-adrenergic signaling promotes extinction learning of cocaine reward memory. Sci Signal 11.  https://doi.org/10.1126/scisignal.aam5402
  56. Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psychiatry 162:1414–1422.  https://doi.org/10.1176/appi.ajp.162.8.1414 CrossRefPubMedGoogle Scholar
  57. Jaffe JH, Cascella NG, Kumor KM, Sherer MA (1989) Cocaine-induced cocaine craving. Psychopharmacology (Berl) 97:59–64.  https://doi.org/10.1007/BF00443414
  58. Jansen JM, Daams JG, Koeter MW, Veltman DJ, van den Brink W, Goudriaan AE (2013) Effects of non-invasive neurostimulation on craving: a meta-analysis. Neurosci Biobehav Rev 37:2472–2480.  https://doi.org/10.1016/j.neubiorev.2013.07.009 CrossRefPubMedGoogle Scholar
  59. Jin Y, Kong J (2017) Transcutaneous Vagus nerve stimulation: a promising method for treatment of autism Spectrum disorders. Front Neurosci 10:609.  https://doi.org/10.3389/fnins.2016.00609 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Johnson AW, Crombag HS, Takamiya K, Baraban JM, Holland PC, Huganir RL, Reti IM (2007) A selective role for neuronal activity regulated pentraxin in the processing of sensory-specific incentive value. J Neurosci 27:13430–13435.  https://doi.org/10.1523/JNEUROSCI.4320-07.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kalivas PW (2008) Addiction as a pathology in prefrontal cortical regulation of corticostriatal habit circuitry. Neurotox Res 14:185–189.  https://doi.org/10.1007/BF03033809 CrossRefPubMedGoogle Scholar
  62. Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572.  https://doi.org/10.1038/nrn2515 CrossRefPubMedGoogle Scholar
  63. Kalivas PW, McFarland K (2003) Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology 168:44–56.  https://doi.org/10.1007/s00213-003-1393-2 CrossRefPubMedGoogle Scholar
  64. Kalivas PW, O'Brien C (2008) Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 33:166–180.  https://doi.org/10.1038/sj.npp.1301564 CrossRefPubMedGoogle Scholar
  65. Kalivas PW, Volkow N, Seamans J (2005) Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45:647–650.  https://doi.org/10.1016/j.neuron.2005.02.005 CrossRefPubMedGoogle Scholar
  66. Khoo SY, Gibson GD, Prasad AA, McNally GP (2017) How contexts promote and prevent relapse to drug seeking. Genes Brain Behav 16:185–204.  https://doi.org/10.1111/gbb.12328
  67. Kong J, Fang J, Park J, Li S, Rong P (2018) Treating depression with transcutaneous auricular vagus nerve stimulation: state of the art and future perspectives. Front Psychiatry 9:20.  https://doi.org/10.3389/fpsyt.2018.00020 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Konova AB, Parvaz MA, Bernstein V, Zilverstand A, Moeller SJ, Delgado MR, Alia-Klein N, Goldstein RZ (2017) Neural mechanisms of extinguishing drug and pleasant cue associations in human addiction: role of the VMPFC. Addict Biol.  https://doi.org/10.1111/adb.12545
  69. Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 92:8856–8860.  https://doi.org/10.1073/pnas.92.19.8856 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Krettek JE, Price JL (1977) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171:157–191.  https://doi.org/10.1002/cne.901710204 CrossRefPubMedGoogle Scholar
  71. LaLumiere RT, Kalivas PW (2008) Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci 28:3170–3177.  https://doi.org/10.1523/JNEUROSCI.5129-07.2008 CrossRefPubMedGoogle Scholar
  72. LaLumiere RT, Niehoff KE, Kalivas PW (2010) The infralimbic cortex regulates the consolidation of extinction after cocaine self-administration. Learn Mem 17:168–175.  https://doi.org/10.1101/lm.1576810 CrossRefPubMedPubMedCentralGoogle Scholar
  73. LaLumiere RT, Smith KC, Kalivas PW (2012) Neural circuit competition in cocaine-seeking: roles of the infralimbic cortex and nucleus accumbens shell. Eur J Neurosci 35:614–622.  https://doi.org/10.1111/j.1460-9568.2012.07991.x CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lasseter HC, Xie X, Ramirez DR, Fuchs RA (2010) Prefrontal cortical regulation of drug seeking in animal models of drug relapse. Curr Top Behav Neurosci 3:101–117.  https://doi.org/10.1007/7854_2009_19 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Li X, Caprioli D, Marchant NJ (2015) Recent updates on incubation of drug craving: a mini-review. Addict Biol 20:872–876.  https://doi.org/10.1111/adb.12205 CrossRefPubMedGoogle Scholar
  76. Lohof AM, Ip NY, Poo MM (1993) Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and BDNF. Nature 363:350–353.  https://doi.org/10.1038/363350a0 CrossRefPubMedGoogle Scholar
  77. Lu L, Grimm JW, Hope BT, Shaham Y (2004) Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology 47:214–226.  https://doi.org/10.1016/j.neuropharm.2004.06.027 CrossRefPubMedGoogle Scholar
  78. Luo L (2000) Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1:173–180.  https://doi.org/10.1038/35044547 CrossRefPubMedGoogle Scholar
  79. Luo YX, Xue YX, Liu JF, Shi HS, Jian M, Han Y, Zhu WL, Bao YP, Wu P, Ding ZB, Shen HW, Shi J, Shaham Y, Lu L (2015) A novel UCS memory retrieval-extinction procedure to inhibit relapse to drug seeking. Nat Commun 6:7675.  https://doi.org/10.1038/ncomms8675
  80. Malvaez M, Sanchis-Segura C, Vo D, Lattal KM, Wood MA (2010) Modulation of chromatin modification facilitates extinction of cocaine-induced conditioned place preference. Biol Psychiatry 67:36–43.  https://doi.org/10.1016/j.biopsych.2009.07.032
  81. Malvaez M, McQuown SC, Rogge GA, Astarabadi M, Jacques V, Carreiro S, Rusche JR, Wood MA (2013) HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc Natl Acad Sci U S A 110:2647–2652.  https://doi.org/10.1073/pnas.1213364110
  82. Marchant NJ, Furlong TM, McNally GP (2010) Medial dorsal hypothalamus mediates the inhibition of reward seeking after extinction. J Neurosci 30:14102–14115.  https://doi.org/10.1523/JNEUROSCI.4079-10.2010 CrossRefPubMedGoogle Scholar
  83. Marchant NJ, Li X, Shaham Y (2013) Recent developments in animal models of drug relapse. Curr Opin Neurobiol 23:675–683.  https://doi.org/10.1016/j.conb.2013.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Marchant NJ, Kaganovsky K, Shaham Y, Bossert JM (2015) Role of corticostriatal circuits in context-induced reinstatement of drug seeking. Brain Res 1628:219–232.  https://doi.org/10.1016/j.brainres.2014.09.004
  85. McDonald AJ, Mascagni F, Guo L (1996) Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71:55–75.  https://doi.org/10.1016/0306-4522(95)00417-3 CrossRefPubMedGoogle Scholar
  86. McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23:3531–3537.  https://doi.org/10.1523/JNEUROSCI.23-08-03531.2003 CrossRefPubMedGoogle Scholar
  87. Migues PV, Hardt O, Wu DC, Gamache K, Sacktor TC, Wang YT, Nader K (2010) PKMzeta maintains memories by regulating GluR2-dependent AMPA receptor trafficking. Nat Neurosci 13:630–634.  https://doi.org/10.1038/nn.2531 CrossRefPubMedGoogle Scholar
  88. Milad MR, Quinn BT, Pitman RK, Orr SP, Fischl B, Rauch SL (2005) Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proc Natl Acad Sci U S A 102:10706–10711.  https://doi.org/10.1073/pnas.0502441102
  89. Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL (2007) Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry 62:446–454.  https://doi.org/10.1016/j.biopsych.2006.10.011
  90. Millan EZ, Milligan-Saville J, McNally GP (2013) Memory retrieval, extinction, and reinstatement of alcohol seeking. Neurobiol Learn Mem 101:26–32.  https://doi.org/10.1016/j.nlm.2012.12.010 CrossRefPubMedGoogle Scholar
  91. Milton AL, Everitt BJ (2012a) The persistence of maladaptive memory: addiction, drug memories and anti-relapse treatments. Neurosci Biobehav Rev 36:1119–1139.  https://doi.org/10.1016/j.neubiorev.2012.01.002 CrossRefPubMedGoogle Scholar
  92. Milton AL, Everitt BJ (2012b) Wiping Drug Memories. Science 336:167–168.  https://doi.org/10.1126/science.1221691 CrossRefPubMedGoogle Scholar
  93. Moorman DE, James MH, McGlinchey EM, Aston-Jones G (2015) Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res 1628:130–146.  https://doi.org/10.1016/j.brainres.2014.12.024 CrossRefPubMedGoogle Scholar
  94. Mueller D, Porter JT, Quirk GJ (2008) Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction. J Neurosci 28:369–375.  https://doi.org/10.1523/jneurosci.3248-07.2008 CrossRefPubMedGoogle Scholar
  95. Mueller EM, Panitz C, Hermann C, Pizzagalli DA (2014) Prefrontal oscillations during recall of conditioned and extinguished fear in humans. J Neurosci 34:7059–7066.  https://doi.org/10.1523/JNEUROSCI.3427-13.2014
  96. Myers KM, Carlezon WA, Davis M (2011) Glutamate receptors in extinction and extinction-based therapies for psychiatric illness. Neuropsychopharmacology 36:274–293.  https://doi.org/10.1038/npp.2010.88 CrossRefPubMedGoogle Scholar
  97. Nakayama AY, Harms MB, Luo L (2000) Small GTPases Rac and rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J Neurosci 20:5329–5338.  https://doi.org/10.1523/JNEUROSCI.20-14-05329.2000 CrossRefPubMedGoogle Scholar
  98. Nestler EJ (2014) Epigenetic mechanisms of drug addiction. Neuropharmacology 76:259–268.  https://doi.org/10.1016/j.neuropharm.2013.04.004 CrossRefPubMedGoogle Scholar
  99. Nic Dhonnchadha BA, Kantak KM (2011) Cognitive enhancers for facilitating drug cue extinction: insights from animal models. Pharmacol Biochem Behav 99:229–244.  https://doi.org/10.1016/j.pbb.2011.01.018 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Nichols JA, Nichols AR, Smirnakis SM, Engineer ND, Kilgard MP, Atzori M (2011) Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors. Neuroscience 189:207–214.  https://doi.org/10.1016/j.neuroscience.2011.05.024 CrossRefPubMedGoogle Scholar
  101. O'Brien CP, Gardner EL (2005) Critical assessment of how to study addiction and its treatment: human and non-human animal models. Pharmacol Ther 108:18–58.  https://doi.org/10.1016/j.pharmthera.2005.06.018 CrossRefPubMedGoogle Scholar
  102. O'Brien RJ, Xu D, Petralia RS, Steward O, Huganir RL, Worley P (1999) Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23:309–323.  https://doi.org/10.1016/S0896-6273(00)80782-5 CrossRefPubMedGoogle Scholar
  103. Oliva V, Cartoni E, Latagliata EC, Puglisi-Allegra S, Baldassarre G (2018) Interplay of prefrontal cortex and amygdala during extinction of drug seeking. Brain Struct Funct 223:1071–1089.  https://doi.org/10.1007/s00429-017-1533-9 CrossRefPubMedGoogle Scholar
  104. Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219.  https://doi.org/10.1093/cercor/10.3.206 CrossRefPubMedGoogle Scholar
  105. Ongur D, Ferry AT, Price JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460:425–449.  https://doi.org/10.1002/cne.10609 CrossRefPubMedGoogle Scholar
  106. Osuch EA, Benson BE, Luckenbaugh DA, Geraci M, Post RM, McCann U (2009) Repetitive TMS combined with exposure therapy for PTSD: a preliminary study. J Anxiety Disord 23:54–59.  https://doi.org/10.1016/j.janxdis.2008.03.015 CrossRefPubMedGoogle Scholar
  107. Otis JM, Fitzgerald MK, Mueller D (2014) Infralimbic BDNF/TrkB enhancement of GluN2B currents facilitates extinction of a cocaine-conditioned place preference. J Neurosci 34:6057–6064.  https://doi.org/10.1523/JNEUROSCI.4980-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Ovari J, Leri F (2008) Inactivation of the ventromedial prefrontal cortex mimics re-emergence of heroin seeking caused by heroin reconditioning. Neurosci Lett 444:52–55.  https://doi.org/10.1016/j.neulet.2008.08.015 CrossRefPubMedGoogle Scholar
  109. Pascual M, Do Couto BR, Alfonso-Loeches S, Aguilar MA, Rodriguez-Arias M, Guerri C (2012) Changes in histone acetylation in the prefrontal cortex of ethanol-exposed adolescent rats are associated with ethanol-induced place conditioning. Neuropharmacology 62:2309–2319.  https://doi.org/10.1016/j.neuropharm.2012.01.011 CrossRefPubMedGoogle Scholar
  110. Peisker CB, Schüller T, Peters J, Wagner BJ, Schilbach L, Müller UJ, Visser-Vandewalle V, Kuhn J (2018) Nucleus accumbens deep brain stimulation in patients with substance use disorders and delay discounting. Brain Sci 8:21.  https://doi.org/10.3390/brainsci8020021 CrossRefPubMedCentralGoogle Scholar
  111. Perry CJ, Zbukvic I, Kim JH, Lawrence AJ (2014) Role of cues and contexts on drug-seeking behaviour. Br J Pharmacol 171:4636–4672.  https://doi.org/10.1111/bph.12735 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Peters J, LaLumiere RT, Kalivas PW (2008a) Infralimbic Prefrontal Cortex is Responsible for Inhibiting Cocaine Seeking in Extinguished Rats. J Neurosci 28:6046–6053.  https://doi.org/10.1523/JNEUROSCI
  113. Peters J, Vallone J, Laurendi K, Kalivas PW (2008b) Opposing roles for the ventral prefrontal cortex and the basolateral amygdala on the spontaneous recovery of cocaine-seeking in rats. Psychopharmacology (Berl) 197:319–326.  https://doi.org/10.1007/s00213-007-1034-2
  114. Peters J, Kalivas PW, Quirk GJ (2009) Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem 16:279–288.  https://doi.org/10.1101/lm.1041309 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Peters J, Dieppa-Perea LM, Melendez LM, Melendez LM, Quirk GJ (2010) Induction of fear extinction with hippocampal-infralimbic BDNF. Science 328:1288–1290.  https://doi.org/10.1126/science.1186909 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Pfarr S, Meinhardt MW, Klee ML, Hansson AC, Vengeliene V, Schonig K, Bartsch D, Hope BT, Spanagel R, Sommer WH (2015) Losing control: excessive alcohol seeking after selective inactivation of cue-responsive neurons in the infralimbic cortex. J Neurosci 35:10750–10761.  https://doi.org/10.1523/jneurosci.0684-15.2015 CrossRefPubMedGoogle Scholar
  117. Phelps EA, Delgado MR, Nearing KI, LeDoux JE (2004) Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43:897–905.  https://doi.org/10.1016/j.neuron.2004.08.042
  118. Reichel CM, Moussawi K, Do PH, Kalivas PW, See RE (2011) Chronic N-acetylcysteine during abstinence or extinction after cocaine self-administration produces enduring reductions in drug seeking. J Pharmacol Exp Ther 337:487–493.  https://doi.org/10.1124/jpet.111.179317
  119. Rich MT, Abbott TB, Chung L, Gulcicek EE, Stone KL, Colangelo CM, Lam TT, Nairn AC, Taylor JR, Torregrossa MM (2016) Phosphoproteomic analysis reveals a novel mechanism of CaMKIIalpha regulation inversely induced by cocaine memory extinction versus reconsolidation. J Neurosci 36:7613–7627.  https://doi.org/10.1523/JNEUROSCI.1108-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306:443–447.  https://doi.org/10.1126/science.1100301 CrossRefPubMedGoogle Scholar
  121. Robison AJ, Nestler EJ (2011) Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 12:623–637.  https://doi.org/10.1038/nrn3111 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Rocha A, Kalivas PW (2010) Role of the prefrontal cortex and nucleus accumbens in reinstating methamphetamine seeking. Eur J Neurosci 31:903–909.  https://doi.org/10.1111/j.1460-9568.2010.07134.x CrossRefPubMedPubMedCentralGoogle Scholar
  123. Rogers JL, Ghee S, See RE (2008) The neural circuitry underlying reinstatement of heroin-seeking behavior in an animal model of relapse. Neuroscience 151:579–588.  https://doi.org/10.1016/j.neuroscience.2007.10.012 CrossRefPubMedGoogle Scholar
  124. Rossetti ZL, Marcangione C, Wise RA (1998) Increase of extracellular glutamate and expression of Fos-like immunoreactivity in the ventral tegmental area in response to electrical stimulation of the prefrontal cortex. J Neurochem 70:1503–1512.  https://doi.org/10.1046/j.1471-4159.1998.70041503.x CrossRefPubMedGoogle Scholar
  125. Rothbaum BO, Davis M (2003) Applying learning principles to the treatment of post-trauma reactions. Ann N Y Acad Sci 1008:112–121.  https://doi.org/10.1196/annals.1301.012 CrossRefPubMedGoogle Scholar
  126. Sadakierska-Chudy A, Frankowska M, Jastrzebska J, Wydra K, Miszkiel J, Sanak M, Filip M (2017) Cocaine administration and its withdrawal enhance the expression of genes encoding histone-modifying enzymes and histone acetylation in the rat prefrontal cortex. Neurotox Res 32:141–150.  https://doi.org/10.1007/s12640-017-9728-7 CrossRefPubMedPubMedCentralGoogle Scholar
  127. Salling MC, Martinez D (2016) Brain stimulation in addiction. Neuropsychopharmacology 41:2798–2809.  https://doi.org/10.1038/npp.2016.80 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Sanchis-Segura C, Spanagel R (2006) Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol 11:2–38.  https://doi.org/10.1111/j.1369-1600.2006.00012.x CrossRefPubMedGoogle Scholar
  129. Sartor GC, Aston-Jones G (2014) Post-retrieval extinction attenuates cocaine memories. Neuropsychopharmacology 39:1059–1065.  https://doi.org/10.1038/npp.2013.323 CrossRefPubMedGoogle Scholar
  130. Schoenbaum G, Chang CY, Lucantonio F, Takahashi YK (2016) Thinking outside the box: orbitofrontal cortex, imagination, and how we can treat addiction. Neuropsychopharmacology 41:2966–2976.  https://doi.org/10.1038/npp.2016.147 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242.  https://doi.org/10.1002/cne.902900205 CrossRefPubMedGoogle Scholar
  132. Shaham Y, Adamson LK, Grocki S, Corrigall WA (1997) Reinstatement and spontaneous recovery of nicotine seeking in rats. Psychopharmacology (Berl) 130:396–403.  https://doi.org/10.1007/s002130050256
  133. Shaham Y, Shalev U, Lu L, de Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology 168:3–20.  https://doi.org/10.1007/s00213-002-1224-x CrossRefPubMedGoogle Scholar
  134. Shen HW, Gipson CD, Huits M, Kalivas PW (2014) Prelimbic cortex and ventral tegmental area modulate synaptic plasticity differentially in nucleus accumbens during cocaine-reinstated drug seeking. Neuropsychopharmacology 39:1169–1177.  https://doi.org/10.1038/npp.2013.318 CrossRefPubMedGoogle Scholar
  135. Shi C, Flanagan SR, Samadani U (2013) Vagus nerve stimulation to augment recovery from severe traumatic brain injury impeding consciousness: a prospective pilot clinical trial. Neurol Res 35:263–276.  https://doi.org/10.1179/1743132813Y.0000000167 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Siahposht-Khachaki A, Fatahi Z, Yans A, Khodagholi F, Haghparast A (2017) Involvement of AMPA/kainate glutamate receptor in the extinction and reinstatement of morphine-induced conditioned place preference: a behavioral and molecular study. Cell Mol Neurobiol 37:315–328.  https://doi.org/10.1007/s10571-016-0371-2 CrossRefPubMedGoogle Scholar
  137. Stefanik MT, Kupchik YM, Kalivas PW (2016) Optogenetic inhibition of cortical afferents in the nucleus accumbens simultaneously prevents cue-induced transient synaptic potentiation and cocaine-seeking behavior. Brain Struct Funct 221:1681–1689.  https://doi.org/10.1007/s00429-015-0997-8 CrossRefPubMedGoogle Scholar
  138. Sun WL, Eisenstein SA, Zelek-Molik A, McGinty JF (2014) A single brain-derived neurotrophic factor infusion into the dorsomedial prefrontal cortex attenuates cocaine self-administration-induced phosphorylation of synapsin in the nucleus accumbens during early withdrawal. Int J Neuropsychopharmacol 18:pyu049.  https://doi.org/10.1093/ijnp/pyu049 CrossRefPubMedGoogle Scholar
  139. Suto N, Laque A, De Ness GL, Wagner GE, Watry D, Kerr T, Koya E, Mayford MR, Hope BT, Weiss F (2016) Distinct memory engrams in the infralimbic cortex of rats control opposing environmental actions on a learned behavior. eLife 5:e21920.  https://doi.org/10.7554/eLife.21920 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Sutton MA, Schmidt EF, Choi KH, Schad CA, Whisler K, Simmons D, Karanian DA, Monteggia LM, Neve RL, Self DW (2003) Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 421:70–75.  https://doi.org/10.1038/nature01249 CrossRefPubMedGoogle Scholar
  141. Taylor JR, Olausson P, Quinn JJ, Torregrossa MM (2009) Targeting extinction and reconsolidation mechanisms to combat the impact of drug cues on addiction. Neuropharmacology 56:186–195.  https://doi.org/10.1016/j.neuropharm.2008.07.027 CrossRefPubMedGoogle Scholar
  142. Thompson RH, Swanson LW (1998) Organization of inputs to the dorsomedial nucleus of the hypothalamus: a reexamination with fluorogold and PHAL in the rat. Brain Res Brain Res Rev 27:89–118.  https://doi.org/10.1016/S0165-0173(98)00010-1 CrossRefPubMedGoogle Scholar
  143. Tian W, Zhao M, Li M, Song T, Zhang M, Quan L, Li S, Sun ZS (2012) Reversal of cocaine-conditioned place preference through methyl supplementation in mice: altering global DNA methylation in the prefrontal cortex. PLoS One 7:e33435.  https://doi.org/10.1371/journal.pone.0033435 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Toda S, Shen HW, Peters J, Cagle S, Kalivas PW (2006) Cocaine increases actin cycling: effects in the reinstatement model of drug seeking. J Neurosci 26:1579–1587.  https://doi.org/10.1523/JNEUROSCI.4132-05.2006 CrossRefPubMedGoogle Scholar
  145. Torregrossa MM, Taylor JR (2013) Learning to forget: manipulating extinction and reconsolidation processes to treat addiction. Psychopharmacology 226:659–672.  https://doi.org/10.1007/s00213-012-2750-9 CrossRefPubMedGoogle Scholar
  146. Torregrossa MM, Sanchez H, Taylor JR (2010) D-cycloserine reduces the context specificity of Pavlovian extinction of cocaine cues through actions in the nucleus accumbens. J Neurosci 30:10526–10533.  https://doi.org/10.1523/JNEUROSCI.2523-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Torregrossa MM, Gordon J, Taylor JR (2013) Double dissociation between the anterior cingulate cortex and nucleus accumbens core in encoding the context versus the content of pavlovian cocaine cue extinction. J Neurosci 33:8370–8377.  https://doi.org/10.1523/JNEUROSCI.0489-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Tran-Nguyen PDL (1998) Time-dependent changes in cocaine-seeking behavior and extracellular dopamine levels in the amygdala during cocaine withdrawal. Neuropsychopharmacology 19:48–59.  https://doi.org/10.1016/S0893-133X(97)00205-4 CrossRefPubMedGoogle Scholar
  149. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496.  https://doi.org/10.1124/pr.109.002451 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Tzschentke TM (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56:613–672CrossRefGoogle Scholar
  151. Uylings HBM, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146:3–17.  https://doi.org/10.1016/j.bbr.2003.09.028 CrossRefPubMedGoogle Scholar
  152. Van den Oever MC, Spijker S, Smit AB, De Vries TJ (2010) Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev 35:276–284.  https://doi.org/10.1016/j.neubiorev.2009.11.016 CrossRefPubMedGoogle Scholar
  153. Van den Oever MC, Rotaru DC, Heinsbroek JA, Gouwenberg Y, Deisseroth K, Stuber GD, Mansvelder HD, Smit AB (2013) Ventromedial prefrontal cortex pyramidal cells have a temporal dynamic role in recall and extinction of cocaine-associated memory. J Neurosci 33:18225–18233.  https://doi.org/10.1523/JNEUROSCI.2412-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Vanderschuren LJ, Ahmed SH (2013) Animal studies of addictive behavior. Cold Spring Harb Perspect Med 3:a011932.  https://doi.org/10.1101/cshperspect.a011932 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Venniro M, Caprioli D, Shaham Y (2016) Animal models of drug relapse and craving: from drug priming-induced reinstatement to incubation of craving after voluntary abstinence. Prog Brain Res 224:25–52.  https://doi.org/10.1016/bs.pbr.2015.08.004 CrossRefPubMedGoogle Scholar
  156. Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58.  https://doi.org/10.1002/syn.10279 CrossRefGoogle Scholar
  157. Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20.  https://doi.org/10.1016/j.neuroscience.2006.06.027 CrossRefPubMedGoogle Scholar
  158. Wang W-S, Kang S, Liu W-T, Li M, Liu Y, Yu C, Chen J, Chi Z-Q, He L, Liu J-G (2012) Extinction of aversive memories associated with morphine withdrawal requires ERK-mediated epigenetic regulation of brain-derived neurotrophic factor transcription in the rat ventromedial prefrontal cortex. J Neurosci 32:13763–13775.  https://doi.org/10.1523/JNEUROSCI.1991-12.2012 CrossRefPubMedGoogle Scholar
  159. Wang W, Ju YY, Zhou QX, Tang JX, Li M, Zhang L, Kang S, Chen ZG, Wang YJ, Ji H, Ding YQ, Xu L, Liu JG (2017) The small GTPase Rac1 contributes to extinction of aversive memories of drug withdrawal by facilitating GABAA receptor endocytosis in the vmPFC. J Neurosci 37:7096–7110.  https://doi.org/10.1523/JNEUROSCI.3859-16.2017 CrossRefPubMedGoogle Scholar
  160. Warren BL, Mendoza MP, Cruz FC, Leao RM, Caprioli D, Rubio FJ, Whitaker LR, McPherson KB, Bossert JM, Shaham Y, Hope BT (2016) Distinct Fos-expressing neuronal ensembles in the ventromedial prefrontal cortex mediate food reward and extinction memories. J Neurosci 36:6691–6703.  https://doi.org/10.1523/JNEUROSCI.0140-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Wietschorke K, Lippold J, Jacob C, Polak T, Herrmann MJ (2016) Transcranial direct current stimulation of the prefrontal cortex reduces cue-reactivity in alcohol-dependent patients. J Neural Transm (Vienna) 123:1173–1178.  https://doi.org/10.1007/s00702-016-1541-6 CrossRefGoogle Scholar
  162. Willcocks AL, McNally GP (2013) The role of medial prefrontal cortex in extinction and reinstatement of alcohol-seeking in rats. Eur J Neurosci 37:259–268.  https://doi.org/10.1111/ejn.12031 CrossRefPubMedGoogle Scholar
  163. Wise RA (2009) Ventral tegmental glutamate: a role in stress-, cue-, and cocaine-induced reinstatement of cocaine-seeking. Neuropharmacology 56(Suppl 1):174–176.  https://doi.org/10.1016/j.neuropharm.2008.06.008 CrossRefPubMedGoogle Scholar
  164. Wolstenholme JT, Mahmood T, Harris GM, Abbas S, Miles MF (2017) Intermittent ethanol during adolescence leads to lasting behavioral changes in adulthood and alters gene expression and histone methylation in the PFC. Front Mol Neurosci 10:307.  https://doi.org/10.3389/fnmol.2017.00307 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Wright KN, Hollis F, Duclot F, Dossat AM, Strong CE, Francis TC, Mercer R, Feng J, Dietz DM, Lobo MK, Nestler EJ, Kabbaj M (2015) Methyl supplementation attenuates cocaine-seeking behaviors and cocaine-induced c-Fos activation in a DNA methylation-dependent manner. J Neurosci 35:8948–8958.  https://doi.org/10.1523/jneurosci.5227-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Xue Y-X, Luo Y-X, Wu P, Shi H-S, Xue L-F, Chen C, Zhu W-L, Ding Z-B, Bao Y-p, Shi J, Epstein DH, Shaham Y, Lu L (2012) A memory retrieval-extinction procedure to prevent drug craving and relapse. Science 336:241–245.  https://doi.org/10.1126/science.1215070 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Xue YX, Xue LF, Liu JF, He J, Deng JH, Sun SC, Han HB, Luo YX, Xu LZ, Wu P, Lu L (2014) Depletion of perineuronal nets in the amygdala to enhance the erasure of drug memories. J Neurosci 34:6647–6658.  https://doi.org/10.1523/JNEUROSCI.5390-13.2014
  168. Yao Y, Kelly MT, Sajikumar S, Serrano P, Tian D, Bergold PJ, Frey JU, Sacktor TC (2008) PKM zeta maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors. J Neurosci 28:7820–7827.  https://doi.org/10.1523/JNEUROSCI.0223-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  169. You ZB, Wang B, Zitzman D, Azari S, Wise RA (2007) A role for conditioned ventral tegmental glutamate release in cocaine seeking. J Neurosci 27:10546–10555.  https://doi.org/10.1523/JNEUROSCI.2967-07.2007 CrossRefPubMedGoogle Scholar
  170. Zbukvic IC, Ganella DE, Perry CJ, Madsen HB, Bye CR, Lawrence AJ, Kim JH (2016) Role of dopamine 2 receptor in impaired drug-cue extinction in adolescent rats. Cereb Cortex 26:2895–2904.  https://doi.org/10.1093/cercor/bhw051 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Zhou L-F, Zhu Y-P (2006) Changes of CREB in rat hippocampus, prefrontal cortex and nucleus accumbens during three phases of morphine induced conditioned place preference in rats. J Zhejiang Univ Sci B 7:107–113.  https://doi.org/10.1631/jzus.2006.B0107 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Fear and Anxiety Disorders, Institute of Life ScienceNanchang UniversityNanchangChina
  2. 2.Tianjin General HospitalTianjin Medical UniversityTianjinChina
  3. 3.National Institute on Drug Dependence, and Beijing Key Laboratory of Drug DependencePeking UniversityBeijingChina
  4. 4.Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning CommisionPeking UniversityBeijingChina

Personalised recommendations