Advertisement

Psychopharmacology

, Volume 235, Issue 9, pp 2725–2737 | Cite as

Pairing neutral cues with alcohol intoxication: new findings in executive and attention networks

  • Brandon G. Oberlin
  • Mario Dzemidzic
  • William J.A. EilerII
  • Claire R. Carron
  • Christina M. Soeurt
  • Martin H. Plawecki
  • Nicholas J. Grahame
  • Sean J. O’Connor
  • David A. Kareken
Original Investigation
  • 104 Downloads

Abstract

Rationale

Alcohol-associated stimuli capture attention, yet drinkers differ in the precise stimuli that become paired with intoxication.

Objectives

Extending our prior work to examine the influence of alcoholism risk factors, we paired abstract visual stimuli with intravenous alcohol delivered covertly and examined brain responses to these Pavlovian-conditioned stimuli in fMRI when subjects were not intoxicated.

Methods

Sixty healthy drinkers performed task-irrelevant alcohol conditioning that presented geometric shapes as conditioned stimuli. Shapes were paired with a rapidly rising alcohol limb (conditioned stimulus; CS+) using intravenous alcohol infusion targeting a final peak breath alcohol concentration of 0.045 g/dL or saline (CS−) infusion at matched rates. On day 2, subjects performed monetary delay discounting outside the scanner to assess delay tolerance and then underwent event-related fMRI while performing the same task with CS+, CS−, and an irrelevant symbol.

Results

CS+ elicited stronger activation than CS− in frontoparietal executive/attention and orbitofrontal reward-associated networks. Risk factors including family history, recent drinking, sex, and age of drinking onset did not relate to the [CS+ > CS−] activation. Delay-tolerant choice and [CS+ > CS−] activation in right inferior parietal cortex were positively related.

Conclusions

Networks governing executive attention and reward showed enhanced responses to stimuli experimentally paired with intoxication, with the right parietal cortex implicated in both alcohol cue pairing and intertemporal choice. While different from our previous study results in 14 men, we believe this paradigm in a large sample of male and female drinkers offers novel insights into Pavlovian processes less affected by idiosyncratic drug associations.

Keywords

Classical conditioning Cue reactivity Associative conditioning Laboratory task Ethanol BA 40 Intertemporal choice Alcoholism Addiction 

Notes

Acknowledgements

The authors acknowledge the excellent technical assistance of Dr. Yu-Chien Wu, Dr. Sourajit Mustafi, Michele Dragoo, Traci Day, and Robert Bryant Jr. (MRI facility); Tetlu Myint and Caron Peper (Neuropsychology Research); and prior analytic contributions by Matthew Yung, Marta Karas, and Jourdan Carroll. The IARC’s Computer-assisted Alcohol Infusion System (oconnor1@iu.edu) managed the infusions employed in this research.

Funding information

This study is supported by grants from the National Institute on Alcohol Abuse and Alcoholism (Indiana Alcohol Research Center, P60AA07611 to DAK; R00AA023296 to BGO). Additional support was provided by the Indiana Clinical and Translational Sciences Institute Clinical Research Center (UL1TR001108), National Institutes of Health, National Center for Advancing Translational Sciences, and Clinical and Translational Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

213_2018_4968_Fig5_ESM.png (106 kb)
Fig. S1

Activation by cluster and scan. Mean values from the functional clusters in Table 3 for the [CS+ > CS−] contrast are illustrated here by scan, and ordered as in Table 3 from top left to bottom right. OFC, orbitofrontal cortex; ACC, anterior cingulate cortex; BA, Brodmann Area; MFG, middle frontal gyrus; AngG, angular gyrus; SFG, superior frontal gyrus; SMG, supramarginal gyrus. (PNG 105 kb)

213_2018_4968_MOESM1_ESM.tif (1.5 mb)
High Resolution image (TIF 1.45 MB)
213_2018_4968_MOESM2_ESM.docx (14 kb)
Table S1 (DOCX 13.7 kb)
213_2018_4968_MOESM3_ESM.docx (16 kb)
Table S2 (DOCX 16.2 kb)

References

  1. Alexander WH, Brown JW (2017) The role of the anterior cingulate cortex in prediction error and signaling surprise. Top Cogn Sci.  https://doi.org/10.1111/tops.12307
  2. Bradley B, Field M, Mogg K, De Houwer J (2004) Attentional and evaluative biases for smoking cues in nicotine dependence: component processes of biases in visual orienting. Behav Pharmacol 15:29–36CrossRefGoogle Scholar
  3. Bucholz KK, Cadoret R, Cloninger CR, Dinwiddie SH, Hesselbrock VM, Nurnberger JI Jr, Reich T, Schmidt I, Schuckit MA (1994) A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. J Stud Alcohol 55:149–158CrossRefGoogle Scholar
  4. Chase HW, Eickhoff SB, Laird AR, Hogarth L (2011) The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol Psychiatry 70:785–793.  https://doi.org/10.1016/j.biopsych.2011.05.025 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Clithero JA, Carter RM, Huettel SA (2009) Local pattern classification differentiates processes of economic valuation. Neuroimage 45:1329–1338.  https://doi.org/10.1016/j.neuroimage.2008.12.074 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Conrad M, McNamara P, King A (2012) Alternative substance paradigm: effectiveness of beverage blinding and effects on acute alcohol responses. Exp Clin Psychopharmacol 20:382–389.  https://doi.org/10.1037/a0029261 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215.  https://doi.org/10.1038/nrn755 CrossRefGoogle Scholar
  8. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324.  https://doi.org/10.1016/j.neuron.2008.04.017 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cox SM, Andrade A, Johnsrude IS (2005) Learning to like: a role for human orbitofrontal cortex in conditioned reward. J Neurosci 25:2733–2740.  https://doi.org/10.1523/JNEUROSCI.3360-04.2005 CrossRefGoogle Scholar
  10. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666.  https://doi.org/10.1038/nrn894 CrossRefGoogle Scholar
  11. Damasio AR (1994) Descartes’ error: emotion, reason, and the human brain. G.P. Putnam, New YorkGoogle Scholar
  12. Du W, Green L, Myerson J (2002) Cross-cultural comparisons of discounting delayed and probabilistic rewards. Psychol Rec 52:479–492CrossRefGoogle Scholar
  13. Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Natl Acad Sci U S A 113:7900–7905.  https://doi.org/10.1073/pnas.1602413113 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Engelmann JM, Versace F, Robinson JD, Minnix JA, Lam CY, Cui Y, Brown VL, Cinciripini PM (2012) Neural substrates of smoking cue reactivity: a meta-analysis of fMRI studies. Neuroimage 60:252–262.  https://doi.org/10.1016/j.neuroimage.2011.12.024 CrossRefGoogle Scholar
  15. Eysenck SBG, Pearson PR, Easting G, Allsopp JF (1985) Age norms for impulsiveness, venturesomeness, and empathy in adults. Personal Individ Differ 6:613–619CrossRefGoogle Scholar
  16. Field M, Mogg K, Zetteler J, Bradley BP (2004) Attentional biases for alcohol cues in heavy and light social drinkers: the roles of initial orienting and maintained attention. Psychopharmacology 176:88–93.  https://doi.org/10.1007/s00213-004-1855-1 CrossRefGoogle Scholar
  17. Freeman N, Friedman RS, Bartholow BD, Wulfert E (2010) Effects of alcohol priming on social disinhibition. Exp Clin Psychopharmacol 18:135–144.  https://doi.org/10.1037/a0018871 CrossRefGoogle Scholar
  18. Friedman RS, McCarthy DM, Bartholow BD, Hicks JA (2007) Interactive effects of alcohol outcome expectancies and alcohol cues on nonconsumptive behavior. Exp Clin Psychopharmacol 15:102–114.  https://doi.org/10.1037/1064-1297.15.1.102 CrossRefGoogle Scholar
  19. Gunzerath L, Faden V, Zakhari S, Warren K (2004) National Institute on Alcohol Abuse and Alcoholism report on moderate drinking. Alcohol Clin Exp Res 28:829–847CrossRefGoogle Scholar
  20. Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:4–26.  https://doi.org/10.1038/npp.2009.129 CrossRefGoogle Scholar
  21. Jarbo K, Verstynen TD (2015) Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum. J Neurosci 35:3865–3878.  https://doi.org/10.1523/JNEUROSCI.2636-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Johnson MW, Bickel WK (2008) An algorithm for identifying nonsystematic delay-discounting data. Exp Clin Psychopharmacol 16:264–274.  https://doi.org/10.1037/1064-1297.16.3.264 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kareken DA, Grahame N, Dzemidzic M, Walker MJ, Lehigh CA, O'Connor SJ (2012) fMRI of the brain’s response to stimuli experimentally paired with alcohol intoxication. Psychopharmacology 220:787–797.  https://doi.org/10.1007/s00213-011-2526-7 CrossRefGoogle Scholar
  24. Kramer DA, Goldman MS (2003) Using a modified Stroop task to implicitly discern the cognitive organization of alcohol expectancies. J Abnorm Psychol 112:171–175CrossRefGoogle Scholar
  25. Kringelbach ML, Rolls ET (2004) The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol 72:341–372.  https://doi.org/10.1016/j.pneurobio.2004.03.006 CrossRefGoogle Scholar
  26. Kringelbach ML, O'Doherty J, Rolls ET, Andrews C (2003) Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex 13:1064–1071CrossRefGoogle Scholar
  27. Kuhn S, Gallinat J (2011) Common biology of craving across legal and illegal drugs—a quantitative meta-analysis of cue-reactivity brain response. Eur J Neurosci 33:1318–1326.  https://doi.org/10.1111/j.1460-9568.2010.07590.x CrossRefGoogle Scholar
  28. Lubman DI, Peters LA, Mogg K, Bradley BP, Deakin JF (2000) Attentional bias for drug cues in opiate dependence. Psychol Med 30:169–175CrossRefGoogle Scholar
  29. Luhmann CC, Chun MM, Yi DJ, Lee D, Wang XJ (2008) Neural dissociation of delay and uncertainty in intertemporal choice. J Neurosci 28:14459–14466.  https://doi.org/10.1523/JNEUROSCI.5058-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mawlawi O, Martinez D, Slifstein M, Broft A, Chatterjee R, Hwang DR, Huang Y, Simpson N, Ngo K, van Heertum R, Laruelle M (2001) Imaging human mesolimbic dopamine transmission with positron emission tomography: I. Accuracy and precision of D(2) receptor parameter measurements in ventral striatum. J Cereb Blood Flow Metab 21:1034–1057.  https://doi.org/10.1097/00004647-200109000-00002 CrossRefGoogle Scholar
  31. Mayo LM, de Wit H (2015) Acquisition of responses to a methamphetamine-associated cue in healthy humans: self-report, behavioral, and psychophysiological measures. Neuropsychopharmacology 40:1734–1741.  https://doi.org/10.1038/npp.2015.21 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mayo LM, de Wit H (2016) Acquisition of conditioned responses to a novel alcohol-paired cue in social drinkers. J Stud Alcohol Drugs 77:317–326CrossRefGoogle Scholar
  33. Mayo LM, Fraser D, Childs E, Momenan R, Hommer DW, de Wit H, Heilig M (2013) Conditioned preference to a methamphetamine-associated contextual cue in humans. Neuropsychopharmacology 38:921–929.  https://doi.org/10.1038/npp.2013.3 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mazur J (1987) An adjusting procedure for studying delayed reinforcement. In: Quantitative analyses of behavior: Vol 5. The effect of delay and intervening events on reinforcement value, vol 5. Erlbaum, Hillsdale, pp 55–73Google Scholar
  35. McClure SM, Laibson DI, Loewenstein G, Cohen JD (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306:503–507CrossRefGoogle Scholar
  36. Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS (2012) Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci 12:241–268.  https://doi.org/10.3758/s13415-011-0083-5 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Oberlin BG, Dzemidzic M, Bragulat V, Lehigh CA, Talavage T, O'Connor SJ, Kareken DA (2012) Limbic responses to reward cues correlate with antisocial trait density in heavy drinkers. Neuroimage 60:644–652.  https://doi.org/10.1016/j.neuroimage.2011.12.043 CrossRefGoogle Scholar
  38. Oberlin BG, Dzemidzic M, Tran SM, Soeurt CM, Albrecht DS, Yoder KK, Kareken DA (2013) Beer flavor provokes striatal dopamine release in male drinkers: mediation by family history of alcoholism. Neuropsychopharmacology 38:1617–1624.  https://doi.org/10.1038/npp.2013.91 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Oberlin BG, Dzemidzic M, Harezlak J, Kudela MA, Tran SM, Soeurt CM, Yoder KK, Kareken DA (2016) Corticostriatal and dopaminergic response to beer flavor with both fMRI and [(11) C]raclopride positron emission tomography. Alcohol Clin Exp Res 40:1865–1873.  https://doi.org/10.1111/acer.13158 CrossRefPubMedPubMedCentralGoogle Scholar
  40. O'Connor S, Morzorati S, Christian J, Li TK (1998) Clamping breath alcohol concentration reduces experimental variance: application to the study of acute tolerance to alcohol and alcohol elimination rate. Alcohol Clin Exp Res 22:202–210CrossRefGoogle Scholar
  41. Peters J, Büchel C (2010) Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal-mediotemporal interactions. Neuron 66:138–148.  https://doi.org/10.1016/j.neuron.2010.03.026 CrossRefGoogle Scholar
  42. Plassmann H, O'Doherty JP, Rangel A (2010) Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making. J Neurosci 30:10799–10808.  https://doi.org/10.1523/JNEUROSCI.0788-10.2010 CrossRefGoogle Scholar
  43. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:2142–2154.  https://doi.org/10.1016/j.neuroimage.2011.10.018 CrossRefGoogle Scholar
  44. Saunders JB, Aasland OG, Babor TF, de la Fuente JR, Grant M (1993) Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption—II. Addiction 88:791–804CrossRefGoogle Scholar
  45. Schacht JP, Anton RF, Myrick H (2013) Functional neuroimaging studies of alcohol cue reactivity: a quantitative meta-analysis and systematic review. Addict Biol 18:121–133.  https://doi.org/10.1111/j.1369-1600.2012.00464.x CrossRefGoogle Scholar
  46. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599CrossRefGoogle Scholar
  47. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356.  https://doi.org/10.1523/JNEUROSCI.5587-06.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sesack SR, Grace AA (2010) Cortico-basal ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47.  https://doi.org/10.1038/npp.2009.93 CrossRefGoogle Scholar
  49. Sescousse G, Caldu X, Segura B, Dreher JC (2013) Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neurosci Biobehav Rev 37:681–696.  https://doi.org/10.1016/j.neubiorev.2013.02.002 CrossRefGoogle Scholar
  50. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, de Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, de Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219.  https://doi.org/10.1016/j.neuroimage.2004.07.051 CrossRefGoogle Scholar
  51. Sobell MB, Sobell LC, Klajner F, Pavan D, Basian E (1986) The reliability of a timeline method for assessing normal drinker college students' recent drinking history: utility for alcohol research. Addict Behav 11:149–161CrossRefGoogle Scholar
  52. Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL (2013) Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci 25:74–86.  https://doi.org/10.1162/jocn_a_00281 CrossRefGoogle Scholar
  53. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A 105:12569–12574.  https://doi.org/10.1073/pnas.0800005105 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Stoeckel LE, Murdaugh DL, Cox JE, Cook EW 3rd, Weller RE (2013) Greater impulsivity is associated with decreased brain activation in obese women during a delay discounting task. Brain Imaging Behavior 7:116–128.  https://doi.org/10.1007/s11682-012-9201-4 CrossRefGoogle Scholar
  55. Thesen S, Heid O, Mueller E, Schad LR (2000) Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magn Reson Med 44:457–465CrossRefGoogle Scholar
  56. Townshend JM, Duka T (2001) Attentional bias associated with alcohol cues: differences between heavy and occasional social drinkers. Psychopharmacology 157:67–74CrossRefGoogle Scholar
  57. Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16:55–61.  https://doi.org/10.1038/nrn3857 CrossRefGoogle Scholar
  58. Van Hedger K, Keedy SK, Mayo LM, Heilig M, de Wit H (2018) Neural responses to cues paired with methamphetamine in healthy volunteers. Neuropsychopharmacology 43:1732–1737.  https://doi.org/10.1038/s41386-017-0005-5 CrossRefGoogle Scholar
  59. Vollstädt-Klein S, Loeber S, Richter A, Kirsch M, Bach P, von der Goltz C, Hermann D, Mann K, Kiefer F (2012) Validating incentive salience with functional magnetic resonance imaging: association between mesolimbic cue reactivity and attentional bias in alcohol-dependent patients. Addict Biol 17:807–816.  https://doi.org/10.1111/j.1369-1600.2011.00352.x CrossRefGoogle Scholar
  60. Weafer J, Gorka SM, Hedeker D, Dzemidzic M, Kareken DA, Phan KL, de Wit H (2017) Associations between behavioral and neural correlates of inhibitory control and amphetamine reward sensitivity. Neuropsychopharmacology 42:1905–1913.  https://doi.org/10.1038/npp.2017.61 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wittmann M, Leland DS, Paulus MP (2007) Time and decision making: differential contribution of the posterior insular cortex and the striatum during a delay discounting task. Exp Brain Res 179:643–653.  https://doi.org/10.1007/s00221-006-0822-y CrossRefGoogle Scholar
  62. Yeo BT et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165.  https://doi.org/10.1152/jn.00338.2011 CrossRefGoogle Scholar
  63. Zuckerman M, Eysenck S, Eysenck HJ (1978) Sensation seeking in England and America: cross-cultural, age, and sex comparisons. J Consult Clin Psychol 46:139–149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Brandon G. Oberlin
    • 1
    • 2
    • 3
    • 4
  • Mario Dzemidzic
    • 2
    • 5
  • William J.A. EilerII
    • 2
  • Claire R. Carron
    • 2
  • Christina M. Soeurt
    • 2
  • Martin H. Plawecki
    • 1
  • Nicholas J. Grahame
    • 4
  • Sean J. O’Connor
    • 1
    • 6
  • David A. Kareken
    • 1
    • 2
    • 3
    • 5
  1. 1.Department of Psychiatry, School of MedicineIndiana UniversityIndianapolisUSA
  2. 2.Department of Neurology, School of MedicineIndiana UniversityIndianapolisUSA
  3. 3.Stark Neurosciences Institute, School of MedicineIndiana UniversityIndianapolisUSA
  4. 4.Department of PsychologyIndiana University–Purdue University IndianapolisIndianapolisUSA
  5. 5.Department of Radiology and Imaging Sciences, School of MedicineIndiana UniversityIndianapolisUSA
  6. 6.Roudebush Veteran’s Administration Medical CenterIndianapolisUSA

Personalised recommendations