Skip to main content
Log in

Chronic methamphetamine self-administration alters cognitive flexibility in male rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Methamphetamine (meth) addiction is a chronically relapsing disorder that often produces persistent cognitive deficits. These include decreased cognitive flexibility, which may prevent meth addicts from altering their habitual drug abuse and leave them more susceptible to relapse. Multiple factors including low rates of compliance with research study participation and varied drug use patterns make the relationship between cognitive flexibility and relapse difficult to establish in clinical populations.

Objectives

Here, we combined an extended-access meth self-administration paradigm with an automated set-shifting task in rats to directly compare cognitive flexibility performance with meth-seeking behavior.

Methods

Rats were pre-trained on an automated visual discrimination task, followed by 14 days of extended access (6 h/day) of meth or sucrose self-administration. They were then tested in the set-shifting task on strategy shift and reversal and subsequently assessed for cue-induced reinstatement of meth seeking.

Results

Rats with a history of meth, but not sucrose, self-administration had selective deficits in reversal learning. Specifically, meth rats had an increase in the total number of errors and perseverative errors (corresponding to the old stimulus-reward association) following the reversal shift, which correlated with prior stable meth self-administration. However, no relationship was seen between errors during the reversal and cue-induced reinstatement.

Conclusion

The lack of association between meth-induced reversal deficits and cue-induced reinstatement to meth seeking indicates that these two domains may constitute independent pathologies of meth addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bechara A, Dolan S, Denburg N, Hindes A, Anderson SW, Nathan PE (2001) Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39:376–389

    Article  CAS  PubMed  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20:4320–4324

    CAS  PubMed  Google Scholar 

  • Boulougouris V, Dalley JW, Robbins TW (2007) Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res 179:219–228

    Article  PubMed  Google Scholar 

  • Brady AM, Floresco SB (2015) Operant procedures for assessing behavioral flexibility in rats. J Vis Exp 96:52387

  • Brown VJ, Bowman EM (2002) Rodent models of prefrontal cortical function. Trends Neurosci 25:340–343

    Article  CAS  PubMed  Google Scholar 

  • Calu DJ, Stalnaker TA, Franz TM, Singh T, Shaham Y, Schoenbaum G (2007) Withdrawal from cocaine self-administration produces long-lasting deficits in orbitofrontal-dependent reversal learning in rats. Learn Mem 14:325–328

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung A, Lyoo IK, Kim SJ, Hwang J, Bae SC, Sung YH, Sim ME, Song IC, Kim J, Chang KH, Renshaw PF (2007) Decreased frontal white-matter integrity in abstinent methamphetamine abusers. Int J Neuropsychopharmacol 10:765–775

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Clark L, Owen AM, Robbins TW (2002) Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci 22:4563–4567

    CAS  PubMed  Google Scholar 

  • Dias R, Robbins TW, Roberts AC (1996) Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behav Neurosci 110:872–886

    Article  CAS  PubMed  Google Scholar 

  • Enomoto T, Tse MT, Floresco SB (2011) Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia. Biol Psychiatry 69:432–441

  • Fletcher PJ, Tenn CC, Rizos Z, Lovic V, Kapur S (2005) Sensitization to amphetamine, but not PCP, impairs attentional set shifting: reversal by a D1 receptor agonist injected into the medial prefrontal cortex. Psychopharmacology 183:190–200

    Article  CAS  PubMed  Google Scholar 

  • Floresco SB, Block AE, Tse MT (2008) Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 190:85–96

    Article  PubMed  Google Scholar 

  • Floresco SB, Zhang Y, Enomoto T (2009) Neural circuits subserving behavioral flexibility and their relevance to schizophrenia. Behav Brain Res 204:396–409

    Article  PubMed  Google Scholar 

  • Ghods-Sharifi S, Haluk DM, Floresco SB (2008) Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning. Neurobiol Learn Mem 89:567–573

    Article  PubMed  Google Scholar 

  • Groman SM, Lee B, London ED, Mandelkern MA, James AS, Feiler K, Rivera R, Dahlbom M, Sossi V, Vandervoort E, Jentsch JD (2011) Dorsal striatal D2-like receptor availability covaries with sensitivity to positive reinforcement during discrimination learning. J Neurosci 31:7291–7299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry BL, Minassian A, Perry W (2010) Effect of methamphetamine dependence on everyday functional ability. Addict Behav 35:593–598

    Article  PubMed  PubMed Central  Google Scholar 

  • Izquierdo A, Jentsch JD (2012) Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology 219:607–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izquierdo A, Belcher AM, Scott L, Cazares VA, Chen J, O’Dell SJ, Malvaez M, Wu T, Marshall JF (2010) Reversal-specific learning impairments after a binge regimen of methamphetamine in rats: possible involvement of striatal dopamine. Neuropsychopharmacology 35:505–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jocham G, Klein TA, Neumann J, von Cramon DY, Reuter M, Ullsperger M (2009) Dopamine DRD2 polymorphism alters reversal learning and associated neural activity. J Neurosci 29:3695–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalechstein AD, Newton TF, Green M (2003) Methamphetamine dependence is associated with neurocognitive impairment in the initial phases of abstinence. J Neuropsychiatry Clin Neurosci 15:215–220

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Lyoo IK, Hwang J, Sung YH, Lee HY, Lee DS, Jeong DU, Renshaw PF (2005) Frontal glucose hypometabolism in abstinent methamphetamine users. Neuropsychopharmacology 30:1383–1391

    CAS  PubMed  Google Scholar 

  • Kim YT, Kwon DH, Chang Y (2011) Impairments of facial emotion recognition and theory of mind in methamphetamine abusers. Psychiatry Res 186:80–84

    Article  PubMed  Google Scholar 

  • Laughlin RE, Grant TL, Williams RW, Jentsch JD (2011) Genetic dissection of behavioral flexibility: reversal learning in mice. Biol Psychiatry 69:1109–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • London ED, Ernst M, Grant S, Bonson K, Weinstein A (2000) Orbitofrontal cortex and human drug abuse: functional imaging. Cereb Cortex 10:334–342

    Article  CAS  PubMed  Google Scholar 

  • London ED, Simon SL, Berman SM, Mandelkern MA, Lichtman AM, Bramen J, Shinn AK, Miotto K, Learn J, Dong Y, Matochik JA, Kurian V, Newton T, Woods R, Rawson R, Ling W (2004) Mood disturbances and regional cerebral metabolic abnormalities in recently abstinent methamphetamine abusers. Arch Gen Psychiatry 61:73–84

    Article  PubMed  Google Scholar 

  • Mackintosh NJ, Holgate V (1968) Effects of inconsistent reinforcement on reversal and nonreversal shifts. J Exp Psychol 76:154–159

    Article  CAS  PubMed  Google Scholar 

  • Mackintosh NJ, McGonigle B, Holgate V, Vanderver V (1968) Factors underlying improvement in serial reversal learning. Can J Psychol 22:85–95

    Article  CAS  PubMed  Google Scholar 

  • McAlonan K, Brown VJ (2003) Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146:97–103

    Article  PubMed  Google Scholar 

  • McCann UD, Kuwabara H, Kumar A, Palermo M, Abbey R, Brasic J, Ye W, Alexander M, Dannals RF, Wong DF, Ricaurte GA (2008) Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Synapse 62:91–100

    Article  CAS  PubMed  Google Scholar 

  • Morris JS, Dolan RJ (2004) Dissociable amygdala and orbitofrontal responses during reversal fear conditioning. Neuroimage 22:372–380

    Article  CAS  PubMed  Google Scholar 

  • National Resources Council (1996) Guide for the care and use of laboratory animals. National Academies Press, Washington, DC

  • Nordahl TE, Salo R, Leamon M (2003) Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: a review. J Neuropsychiatry Clin Neurosci 15:317–325

    Article  CAS  PubMed  Google Scholar 

  • Ornstein TJ, Iddon JL, Baldacchino AM, Sahakian BJ, London M, Everitt BJ, Robbins TW (2000) Profiles of cognitive dysfunction in chronic amphetamine and heroin abusers. Neuropsychopharmacology 23:113–126

    Article  CAS  PubMed  Google Scholar 

  • Parsegian A, Glen WB Jr, Lavin A, See RE (2011) Methamphetamine self-administration produces attentional set-shifting deficits and alters prefrontal cortical neurophysiology in rats. Biol Psychiatry 69:253–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulus MP, Hozack N, Frank L, Brown GG, Schuckit MA (2003) Decision making by methamphetamine-dependent subjects is associated with error-rate-independent decrease in prefrontal and parietal activation. Biol Psychiatry 53:65–74

    Article  CAS  PubMed  Google Scholar 

  • Paulus MP, Tapert SF, Schuckit MA (2005) Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Arch Gen Psychiatry 62:761–768

    Article  PubMed  Google Scholar 

  • Reichel CM, Chan CH, Ghee SM, See RE (2012) Sex differences in escalation of methamphetamine self-administration: cognitive and motivational consequences in rats. Psychopharmacology 223:371–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins TW, Arnsten AF (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts AC, Robbins TW, Everitt BJ (1988) The effects of intradimensional and extradimensional shifts on visual discrimination learning in humans and non-human primates. Q J Exp Psychol B 40:321–341

    CAS  PubMed  Google Scholar 

  • Rogers RD, Robbins TW (2001) Investigating the neurocognitive deficits associated with chronic drug misuse. Curr Opin Neurobiol 11:250–257

    Article  CAS  PubMed  Google Scholar 

  • Salo R, Ursu S, Buonocore MH, Leamon MH, Carter C (2009) Impaired prefrontal cortical function and disrupted adaptive cognitive control in methamphetamine abusers: a functional magnetic resonance imaging study. Biol Psychiatry 65:706–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenbaum G, Nugent SL, Saddoris MP, Setlow B (2002) Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport 13:885–890

    Article  PubMed  Google Scholar 

  • Schoenbaum G, Saddoris MP, Ramus SJ, Shaham Y, Setlow B (2004) Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. Eur J Neurosci 19:1997–2002

    Article  PubMed  Google Scholar 

  • Slamecka NJ (1968) A methodological analysis of shift paradigms in human discrimination learning. Psychol Bull 69:423–438

    Article  CAS  PubMed  Google Scholar 

  • Stewart JL, Connolly CG, May AC, Tapert SF, Wittmann M, Paulus MP (2014) Striatum and insula dysfunction during reinforcement learning differentiates abstinent and relapsed methamphetamine-dependent individuals. Addiction 109:460–471

    Article  PubMed  PubMed Central  Google Scholar 

  • Volkow ND, Fowler JS, Wolf AP, Hitzemann R, Dewey S, Bendriem B, Alpert R, Hoff A (1991) Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am J Psychiatry 148:621–626

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, Logan J, Franceschi D, Gatley J, Hitzemann R, Gifford A, Wong C, Pappas N (2001) Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry 158:2015–2021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants RO1 DA033479, R01 DA006214, R01 MH092868, C06 RR015455, NIDA training grant 5T32DA7288-20, and a grant from the Natural Sciences and Engineering Research Council of Canada to SBF. We also thank Shannon Ghee for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald E. See.

Ethics declarations

Procedures were conducted in accordance with the “Guide for the Care and Use of Laboratory Rats” (Institute of Laboratory Animal Resources on Life Sciences, National Resources Council, 1996) and approved by the IACUC of the Medical University of South Carolina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cox, B.M., Cope, Z.A., Parsegian, A. et al. Chronic methamphetamine self-administration alters cognitive flexibility in male rats. Psychopharmacology 233, 2319–2327 (2016). https://doi.org/10.1007/s00213-016-4283-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4283-0

Keywords

Navigation