Error estimates on ergodic properties of discretized Feynman–Kac semigroups

  • Grégoire FerréEmail author
  • Gabriel Stoltz


We consider the numerical analysis of the time discretization of Feynman–Kac semigroups associated with diffusion processes. These semigroups naturally appear in several fields, such as large deviation theory, Diffusion Monte Carlo or non-linear filtering. We present error estimates à la Talay–Tubaro on their invariant measures when the underlying continuous stochastic differential equation is discretized; as well as on the leading eigenvalue of the generator of the dynamics, which corresponds to the rate of creation of probability. This provides criteria to construct efficient integration schemes of Feynman–Kac dynamics, as well as a mathematical justification of numerical results already observed in the Diffusion Monte Carlo community. Our analysis is illustrated by numerical simulations.

Mathematics Subject Classification

65 35 60 



The authors are grateful to Mathias Rousset for his help in understanding Feynman–Kac models. We also thank Frédéric Cérou, Jonathan Mattingly, Julien Roussel, Hugo Touchette and Jonathan Weare for fruitful discussions, and the anonymous referees for their useful comments. The Ph.D. fellowship of Grégoire Ferré is partly funded by the Bézout Labex, funded by ANR, reference ANR-10-LABX-58. The work of Gabriel Stoltz was funded in part by the Agence Nationale de la Recherche, under Grant ANR-14-CE23-0012 (COSMOS) and by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 614492. We also benefited from the scientific environment of the Laboratoire International Associé between the Centre National de la Recherche Scientifique and the University of Illinois at Urbana-Champaign.


  1. 1.
    Abdulle, A., Cohen, D., Vilmart, G., Zygalakis, K.C.: High weak order methods for stochastic differential equations based on modified equations. SIAM J. Sci. Comput. 34(3), A1800–A1823 (2012)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Abdulle, A., Vilmart, G., Zygalakis, K.C.: High order numerical approximation of the invariant measure of ergodic SDEs. SIAM J. Numer. Anal. 52(4), 1600–1622 (2014)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Abdulle, A., Vilmart, G., Zygalakis, K.C.: Long time accuracy of Lie–Trotter splitting methods for Langevin dynamics. SIAM J. Numer. Anal. 53(1), 1–16 (2015)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Anderson, J.B.: A random-walk simulation of the Schrödinger equation: H\(^+_3\). J. Chem. Phys. 63(4), 1499–1503 (1975)Google Scholar
  5. 5.
    Bou-Rabee, N., Owhadi, H.: Long-run accuracy of variational integrators in the stochastic context. SIAM J. Numer. Anal. 48(1), 278–297 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ceperley, D.M., Alder, B.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45(7), 566 (1980)Google Scholar
  7. 7.
    Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology, Volume 5: Evolution Problems I. Springer, Berlin (2000)zbMATHGoogle Scholar
  8. 8.
    Debussche, A., Faou, E.: Weak backward error analysis for SDEs. SIAM J. Numer. Anal. 50(3), 1735–1752 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Del Moral, P.: Feynman–Kac Formulae. Springer, Berlin (2004)zbMATHGoogle Scholar
  10. 10.
    Del Moral, P., Guionnet, A.: On the stability of interacting processes with applications to filtering and genetic algorithms. Annales de l’IHP Probabilités et Statistiques 37(2), 155–194 (2001)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Del Moral, P., Miclo, L.: Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to non-linear filtering. In: Séminaire de probabilités XXXIV, pp. 1–145. Springer (2000)Google Scholar
  12. 12.
    Del Moral, P., Miclo, L.: Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups. ESAIM Probab. Stat. 7, 171–208 (2003)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability, vol. 38. Springer, Berlin (2010)zbMATHGoogle Scholar
  14. 14.
    den Hollander, F.: Large Deviations, Volume 14 of Fields Institute Monographs. American Mathematical Society (2000) Google Scholar
  15. 15.
    Dobrushin, R.L.: Central limit theorem for nonstationary Markov chains. I. Theory Probab. Appl. 1(1), 65–80 (1956)MathSciNetGoogle Scholar
  16. 16.
    Dobrushin, R.L.: Central limit theorem for nonstationary Markov chains. II. Theory Probab. Appl. 1(4), 329–383 (1956)MathSciNetGoogle Scholar
  17. 17.
    Donsker, M.D., Varadhan, S.R.S.: On a variational formula for the principal eigenvalue for operators with maximum principle. Proc. Natl. Acad. Sci. 72(3), 780–783 (1975)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Douc, R., Moulines, E.: Limit theorems for weighted samples with applications to sequential Monte Carlo methods. ESAIM Proc. 19, 101–107 (2007)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Douc, R., Moulines, E., Olsson, J.: Long-term stability of sequential Monte Carlo methods under verifiable conditions. Ann. Appl. Probab. 24(5), 1767–1802 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Doucet, A., de Freitas, N., Gordon, N.: Sequential Monte Carlo Methods in Practice. Springer, Cham (2001)zbMATHGoogle Scholar
  21. 21.
    Du, Y.: Order Structure and Topological Methods in Nonlinear Partial Differential Equations, Volume 1: Maximum Principles and Applications. World Scientific, Singapore (2006)zbMATHGoogle Scholar
  22. 22.
    El Makrini, M., Jourdain, B., Lelièvre, T.: Diffusion Monte Carlo method: numerical analysis in a simple case. ESAIM Math. Model. Numer. Anal. 41(2), 189–213 (2007)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Evans, L.C.: Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics. American Mathematical Society, New York (2010)Google Scholar
  24. 24.
    Fathi, M., Stoltz, G.: Improving dynamical properties of stabilized discretizations of overdamped Langevin dynamics. Numer. Math. 136(2), 545–602 (2017)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Ferré, G.: Large Deviations Theory in Statistical Physics: Some Theoretical and Numerical Aspects. Ph.D. thesis, Université Paris-Est (2019)Google Scholar
  26. 26.
    Ferré, G., Rousset, M., Stoltz, G.: More on the long time stability of Feynman–Kac semigroups arXiv:1807.00390 (2018)
  27. 27.
    Foulkes, W., Mitas, L., Needs, R., Rajagopal, G.: Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73(1), 33 (2001)Google Scholar
  28. 28.
    Gärtner, J.: On large deviations from the invariant measure. Theory Probab. Appl. 22(1), 24–39 (1977)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Giardina, C., Kurchan, J., Peliti, L.: Direct evaluation of large deviation functions. Phys. Rev. Lett. 96(12), 120603 (2006)Google Scholar
  30. 30.
    Grimm, R., Storer, R.: Monte Carlo solution of Schrödinger’s equation. J. Comput. Phys. 7(1), 134–156 (1971)Google Scholar
  31. 31.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Volume 31 of Springer Series in Computational Mathematics. Springer, Berlin (2006)zbMATHGoogle Scholar
  32. 32.
    Hairer, M., Mattingly, J.C.: Yet another look at Harris’ ergodic theorem for Markov chains. In: Seminar on Stochastic Analysis, Random Fields and Applications VI, pp. 109–117. Springer (2011)Google Scholar
  33. 33.
    Hairer, M., Weare, J.: Improved diffusion Monte Carlo. Commun. Pure Appl. Math. 67(12), 1995–2021 (2014)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Hairer, M., Weare, J.: The Brownian fan. Commun. Pure Appl. Math. 68(1), 1–60 (2015)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Jarzynski, C.: Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys. Rev. E 56(5), 5018–5035 (1997)MathSciNetGoogle Scholar
  36. 36.
    Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997)Google Scholar
  37. 37.
    Jasra, A.: On the behaviour of the backward interpretation of Feynman–Kac formulae under verifiable conditions. J. Appl. Probab. 52(02), 339–359 (2015)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, Volume 113 of Graduate Texts in Mathematics. Springer, Berlin (2012)Google Scholar
  39. 39.
    Kopec, M.: Weak backward error analysis for overdamped Langevin processes. IMA J. Numer. Anal. 35(2), 583–614 (2014)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Kopec, M.: Weak backward error analysis for Langevin process. BIT Numer. Math. 55(4), 1057–1103 (2015)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Lecomte, V., Tailleur, J.: A numerical approach to large deviations in continuous time. J. Stat. Mech. Theory Exp. 2007(03), P03004 (2007)Google Scholar
  42. 42.
    Leimkuhler, B., Matthews, C., Stoltz, G.: The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal. 36(1), 13–79 (2016)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Lelièvre, T., Stoltz, G.: Partial differential equations and stochastic methods in molecular dynamics. Acta Numer. 25, 681–880 (2016)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Lelièvre, T., Stoltz, G., Rousset, M.: Free Energy Computations: A Mathematical Perspective. World Scientific, Singapore (2010)zbMATHGoogle Scholar
  45. 45.
    Lim, L.H., Weare, J.: Fast randomized iteration: diffusion Monte Carlo through the lens of numerical linear algebra. SIAM Rev. 59(3), 547–587 (2017)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Makri, N., Miller, W.H.: Exponential power series expansion for the quantum time evolution operator. J. Chem. Phys. 90(2), 904–911 (1989)Google Scholar
  47. 47.
    Mattingly, J.C., Stuart, A.M., Tretyakov, M.V.: Convergence of numerical time-averaging and stationary measures via Poisson equations. SIAM J. Numer. Anal. 48(2), 552–577 (2010)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Mella, M., Morosi, G., Bressanini, D.: Time step bias improvement in diffusion Monte Carlo simulations. Phys. Rev. E 61(2), 2050 (2000)Google Scholar
  49. 49.
    Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Scientific Computation. Springer, Berlin (2004)zbMATHGoogle Scholar
  50. 50.
    Nemoto, T., Bouchet, F., Jack, R.L., Lecomte, V.: Population-dynamics method with a multicanonical feedback control. Phys. Rev. E 93(6), 062123 (2016)MathSciNetGoogle Scholar
  51. 51.
    Nemoto, T., Hidalgo, E.G., Lecomte, V.: Finite-time and finite-size scalings in the evaluation of large-deviation functions: analytical study using a birth–death process. Phys. Rev. E 95(1), 012102 (2017)MathSciNetGoogle Scholar
  52. 52.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)zbMATHGoogle Scholar
  53. 53.
    Reed, M., Simon, B.: Modern Methods in Mathematical Physics. Analysis of Operators, vol. 4. Academic Press, New York (1978)zbMATHGoogle Scholar
  54. 54.
    Rey-Bellet, L.: Ergodic properties of Markov processes. In: Attal, S., Joye, A., Pillet, C.A. (eds.) Open Quantum Systems II, pp. 1–39. Springer, Berlin, Heidelberg (2006)Google Scholar
  55. 55.
    Rousset, M.: Continuous Time Population Monte Carlo and Computational Physics. Ph.D. thesis, Universitié Paul Sabatier Toulouse (2006)Google Scholar
  56. 56.
    Rousset, M.: On the control of an interacting particle estimation of Schrödinger ground states. SIAM J. Math. Anal. 38(3), 824–844 (2006)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Rousset, M., Stoltz, G.: Equilibrium sampling from nonequilibrium dynamics. J. Stat. Phys. 123(6), 1251–1272 (2006)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Sarsa, A., Boronat, J., Casulleras, J.: Quadratic diffusion Monte Carlo and pure estimators for atoms. J. Chem. Phys. 116(14), 5956–5962 (2002)Google Scholar
  59. 59.
    Schaefer, H.H.: Banach Lattices and Positive Operators, volume 215 of Grundlehren der Mathematischen Wissenschaften. Springer (1974)Google Scholar
  60. 60.
    Tailleur, J., Lecomte, V.: Simulation of large deviation functions using population dynamics. AIP Conf. Proc. 1091(1), 212–219 (2009)Google Scholar
  61. 61.
    Talay, D.: Second-order discretization schemes of stochastic differential systems for the computation of the invariant law. Stochastics 29(1), 13–36 (1990)zbMATHGoogle Scholar
  62. 62.
    Talay, D., Tubaro, L.: Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8(4), 483–509 (1990)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478(1), 1–69 (2009)MathSciNetGoogle Scholar
  64. 64.
    Trstanova, Z.: Mathematical and Algorithmic Analysis of Modified Langevin Dynamics. Ph.D. thesis, Université Grenoble Alpes (2016)Google Scholar
  65. 65.
    Umrigar, C., Nightingale, M., Runge, K.: A diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys. 99(4), 2865–2890 (1993)Google Scholar
  66. 66.
    Varadhan, S.R.S.: Large Deviations and Applications. SIAM, Philadelphia (1984)zbMATHGoogle Scholar
  67. 67.
    Zygalakis, K.: On the existence and the applications of modified equations for stochastic differential equations. SIAM J. Sci. Comput. 33(1), 102–130 (2011)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CERMICS (ENPC), InriaUniversité Paris-EstMarne-la-ValléeFrance

Personalised recommendations