Representation of conformal maps by rational functions

  • Abinand Gopal
  • Lloyd N. TrefethenEmail author


The traditional view in numerical conformal mapping is that once the boundary correspondence function has been found, the map and its inverse can be evaluated by contour integrals. We propose that it is much simpler, and 10–1000 times faster, to represent the maps by rational functions computed by the AAA algorithm. To justify this claim, first we prove a theorem establishing root-exponential convergence of rational approximations near corners in a conformal map, generalizing a result of D. J. Newman in 1964. This leads to the new algorithm for approximating conformal maps of polygons. Then we turn to smooth domains and prove a sequence of four theorems establishing that in any conformal map of the unit circle onto a region with a long and slender part, there must be a singularity or loss of univalence exponentially close to the boundary, and polynomial approximations cannot be accurate unless of exponentially high degree. This motivates the application of the new algorithm to smooth domains, where it is again found to be highly effective.

Mathematics Subject Classification

30C30 41A20 65E05 



This paper originated in stimulating discussions with Anne Greenbaum and Trevor Caldwell about their computations with the Kerzman–Stein integral equation, and Grady Wright gave key assistance in a Chebfun implementation. The heart of the paper is Schwarz–Christoffel mapping, which is made numerically possible by Toby Driscoll’s marvelous SC Toolbox. Driscoll, and Yuji Nakatsukasa offered helpful advice along the way, and the suggestions of Dmitry Belyaev, Chris Bishop, and Tom DeLillo were crucial for developing the theorems of Sect. 4. Among other things, Belyaev caught an error in an early version of Theorems 2 and 3 and Bishop pointed us to Theorem 6.1 of [16] and proposed the idea of Theorem 4. Much of this article was written during an extremely enjoyable 2017–2018 sabbatical visit by the second author to the Laboratoire de l’Informatique du Parallélisme at ENS Lyon hosted by Nicolas Brisebarre, Jean-Michel Muller, and Bruno Salvy.


  1. 1.
    Ahlfors, L.: Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen, Dr. der Finnischen Literaturges (1930)Google Scholar
  2. 2.
    Ahlfors, L.: Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill, New York (1973)zbMATHGoogle Scholar
  3. 3.
    Badreddine, M., DeLillo, T.K., Sahraei, S.: A comparison of some numerical conformal mapping methods for simply and multiply connected domains. Discret. Contin. Dyn. Syst. Ser. B 24, 55–82 (2019)zbMATHGoogle Scholar
  4. 4.
    Banjai, L.: Revisiting the crowding phenomenon in Schwarz–Christoffel mapping. SIAM J. Sci. Comput. 30, 618–636 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Computing. SIAM, University City (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Caldwell, T., Li, K., Greenbaum, A.: Numerical conformal mapping in Chebfun, poster. In: Householder XX Symposium on Numerical Linear Algebra, Blacksburg (2017)Google Scholar
  7. 7.
    Computational Methods and Function Theory. Special Issue on Numerical Conformal Mapping, vol. 11, no. 2, pp. 375–787 (2012)Google Scholar
  8. 8.
    DeLillo, T.K.: The accuracy of numerical conformal mapping methods: a survey of examples and results. SIAM J. Numer. Anal. 31, 788–812 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    DeLillo, T.K., Pfaltzgraff, J.A.: Extremal distance, harmonic measure and numerical conformal mapping. J. Comput. Appl. Math. 46, 103–113 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Driscoll, T.A.: Algorithm 756: A MATLAB toolbox for Schwarz–Christoffel mapping. ACM Trans. Math. Softw. 22, 168–186 (1996)CrossRefzbMATHGoogle Scholar
  11. 11.
    Driscoll, T.A., Hale, N., Trefethen, L.N. (eds.): Chebfun User’s Guide. Pafnuty Publications, Oxford (2014)Google Scholar
  12. 12.
    Driscoll, T.A., Trefethen, L.N.: Schwarz–Christoffel Mapping. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ellacott, S.W.: A technique for approximate conformal mapping. In: Handscomb, D.C. (ed.) Multivariable Approximation. Academic Press, London (1978)Google Scholar
  14. 14.
    Filip, S., Javeed, A., Trefethen, L.N.: Smooth random functions, random ODEs, and Gaussian pocesses. SIAM Rev. (to appear)Google Scholar
  15. 15.
    Gaier, D.: Konstruktive Methoden der konformen Abbildung. Springer, Berlin (1964)CrossRefzbMATHGoogle Scholar
  16. 16.
    Garnett, J.B., Marshall, D.E.: Harmonic Measure. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  17. 17.
    Gordon, C., Webb, D., Wolpert, S.: Isospectral plane domains and surfaces via Riemannian orbifolds. Invent. Math. 110, 1–22 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 5th edn. Academic Press, Cambridge (2014)zbMATHGoogle Scholar
  19. 19.
    Hakula, H., Quach, T.A., Rasila, A.: Conjugate function method for numerical conformal mappings. J. Comput. Appl. Math. 237, 340–353 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Henrici, P.: Applied and Computational Complex Analysis, 3rd edn. Wiley, Hoboken (1974)zbMATHGoogle Scholar
  21. 21.
    Kerzman, N., Stein, E.M.: The Cauchy kernel, the Szegő kernel, and the Riemann mapping function. Math. Ann. 236, 85–93 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kerzman, N., Trummer, M.R.: Numerical conformal mapping via the Szegő kernel. J. Comput. Appl. Math. 14, 111–123 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lehman, R.S.: Development of the mapping function at an analytic corner. Pac. J. Math. 7, 1437–1449 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Marden, M.: Geometry of Polynomials, 2nd edn. American Mathematical Society, Providence (1966)zbMATHGoogle Scholar
  25. 25.
    Mörters, P., Peres, Y.: Brownian Motion. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  26. 26.
    Nakatsukasa, Y., Sète, O., Trefethen, L.N.: The AAA algorithm for rational approximation. SIAM J. Sci. Comput. 40, A1494–A1522 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Newman, D.J.: Rational approximation to \(|x|\). Mich. Math. J. 11, 11–14 (1964)CrossRefzbMATHGoogle Scholar
  28. 28.
    Papamichael, N., Stylianopoulos, N.: Numerical Conformal Mapping: Domain Decomposition and the Mapping of Quadrilaterals. World Scientific Publishing, Singapore (2010)CrossRefzbMATHGoogle Scholar
  29. 29.
    Papamichael, N., Warby, M.K., Hough, D.M.: The treatment of corner and pole-type singularities in numerical conformal mapping techniques. J. Comput. Appl. Math. 14, 163–191 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pfluger, A.: Extremallängen und Kapazität. Comment. Math. Helv. 29, 120–131 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Pommerenke, Ch.: Boundary Behavior of Conformal Maps. Springer, Berlin (1992)CrossRefzbMATHGoogle Scholar
  32. 32.
    Reichel, L.: On polynomial approximation in the complex plane with application to conformal mapping. Math. Comput. 44, 425–433 (1985). An earlier technical report version version with additional material appeared as Report TRITA-NA-8102. Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm (1981)Google Scholar
  33. 33.
    Stahl, H.: The convergence of Padé approximants to functions with branch points. J. Approx. Theory 91, 139–204 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Stahl, H.: Spurious poles in Padé approximation. J. Comput. Appl. Math. 99, 511–527 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Stahl, H.R.: Best uniform rational approximation of \(x^\alpha \) on \([0,1]\). Acta Math. 190, 241–306 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Suetin, S.P.: Distribution of the zeros of Padé polynomials and analytic continuation. Russ. Math. Surv. 70, 901–951 (2015)CrossRefzbMATHGoogle Scholar
  37. 37.
    Trefethen, L.N.: Numerical computation of the Schwarz–Christoffel transformation. SIAM J. Sci. Stat. Comput. 1, 82–102 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, University City (2013)zbMATHGoogle Scholar
  39. 39.
    Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56, 385–458 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wegmann, R.: Methods for numerical conformal mapping. In: Kühnau, R. (ed.) Handbook of Complex Analysis: Geometric Function Theory, 2nd edn, pp. 351–477. Elsevier, New York (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematical Institute University of OxfordOxfordUK

Personalised recommendations