Advertisement

Numerische Mathematik

, Volume 141, Issue 2, pp 495–567 | Cite as

Error estimates for the implicit MAC scheme for the compressible Navier–Stokes equations

  • Thierry Gallouët
  • David MalteseEmail author
  • Antonin Novotny
Article
  • 59 Downloads

Abstract

We prove existence of a solution to the implicit MAC scheme for the compressible Navier–Stokes equations. We derive error estimates for this scheme on two and three dimensional Cartesian grids. Error estimates are obtained by using the discrete version of the relative energy method introduced on the continuous level in Feireisl et al. (J Math Fluid Mech 14(4):717–730, 2012). A systematic use of the theoretical “continuous” analysis of the equations in combination with the numerical tools is crucial for the result. This error estimate does not uses stability hypotheses on the solution of the numerical scheme.

Mathematics Subject Classification

35Q30 65N12 76N10 76N15 76M12 76M20 

References

  1. 1.
    Ansanay-Alex, G., Babik, F., Latché, J.-C., Vola, D.: An L\(^2\)-stable approximation of the Navier–Stokes convection operator for low-order non-conforming finite elements. Int. J. Numer. Methods Fluids 66, 555–580 (2011)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bijl, H., Wesseling, P.: A unified method for computing incompressible and compressible flows in boundary-fitted coordinates. J. Comput. Phys. 141, 153–173 (1998)MathSciNetzbMATHGoogle Scholar
  3. 3.
    CALIF3S: A software components library for the computation of reactive turbulent flows. https://gforge.irsn.fr/gf/project/calif3s
  4. 4.
    Cancès, C., Mathis, H., Seguin, N.: Relative entropy for the finite volume approximation of strong solutions to systems of conservation laws. SIAM J. Numer. Anal. 54(2), 263–1287 (2016)zbMATHGoogle Scholar
  5. 5.
    Casulli, V., Greenspan, D.: Pressure method for the numerical solution of transient, compressible fluid flows. Int. J. Numer. Method Fluid 4, 1001–1012 (1984)zbMATHGoogle Scholar
  6. 6.
    Colella, P., Pao, K.: A projection method for low speed flows. J. Comput. Phys. 149, 245–269 (1999)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Colella, P., Pao, K.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. Revue française d’automatique, informatique, recherche opérationnelle. Mathématique. 7(3):33–75 (1973)Google Scholar
  8. 8.
    Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)zbMATHGoogle Scholar
  9. 9.
    Ern, A., Guermond, J-L.: Eléments finis: théorie, applications, mise en oeuvre. Springer, Berlin, p 36 (2002)Google Scholar
  10. 10.
    Eymard, R., Gallouët, T., Ghilani, M., Herbin, R.: Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18(4), 563–594 (1998)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, vol. 7, pp. 713–1018. North-Holland, Amsterdam (2000)Google Scholar
  12. 12.
    Eymard, R., Gallouët, T., Latché, R. Herbin J-C.: A convergent finite element-finite volume scheme for the compressible Stokes problem. II. The isentropic case. Math. Comput. 270(79), 649–675 (2010)Google Scholar
  13. 13.
    Feireisl, E.: Dynamics of Viscous Compressible Fluids, vol. 26. Oxford University Press, Oxford (2004). Oxford Lecture Series in Mathematics and its ApplicationszbMATHGoogle Scholar
  14. 14.
    Feireisl, E., Hošek, R., Maltese, D., Novotný, A.: Error estimates for a numerical method for the compressible Navier–Stokes system on sufficiently smooth domains. ESAIM: Math. Model. Numer. Anal. 51(1), 279–319 (2017)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak–strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid. Mech. 14(4), 717–730 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Feireisl, E., Lukačová-Medvidová, M.: Convergence of a mixed finite element finite volume scheme for the isentropic Navier–Stokes system via dissipative measure-valued solutions. Found. Comput. Math. 18(3), 703–730 (2018)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 3(4), 358–392 (2001)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Feireisl, E., Novotný, A.: Weak-strong uniqueness property for the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 204(2), 683–706 (2012)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Feireisl, E., Novotný, A., Sun, Y.: Suitable weak solutions to the navier-stokes equations of compressible viscous fluids. Indiana Univ. Math. J 60(2), 611–631 (2011)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Fettah, A., Gallouët, T.: Numerical approximation of the general compressible Stokes problem. IMA J. Numer. Anal. 33(3), 922–951 (2013)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Gallouët, T., Gastaldo, L., Latché, J.-C., Herbin, R.: An unconditionally stable pressure correction scheme for compressible barotropic Navier–Stokes equations. M2AN Math. Model. Numer. Anal. 44(2), 251–287 (2010)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Gallouët, T., Latché, J.-C., Herbin, R.: \(W^{1, q}\) stability of the Fortin operator for the MAC scheme. Calcolo 49(1), 63–71 (2012)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Gallouët, T., Herbin, R., Latché, J.-C., Mallem, K.: Convergence of the MAC scheme for the incompressible Navier–Stokes equations. Found. Comput. Math. 18(1), 249–289 (2018)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Gallouët, T., Herbin, R., Maltese, D., Novotny, A.: Error estimates for a numerical approximation to the compressible barotropic Navier–Stokes equations. IMA J. Numer. Anal. 36(2), 543–592 (2016)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Gastaldo, L., Herbin, R., Kheriji, W., Lapuerta, C., Latché, J.-C.: Staggered discretizations, pressure correction schemes and all speed barotropic flows. Finite Volumes for Complex Applications VI - Problems and Perspectives, Prague, Czech Republic 2, 39–56 (2011)Google Scholar
  26. 26.
    Gastaldo, L., Herbin, R., Latché, J-C., Therme, N.: Consistent explicit staggered schemes with muscle and artificial viscosity techniques for the Euler equations. Personal communication (2015)Google Scholar
  27. 27.
    Harlow, F.H., Amsden, A.A.: Numerical calculation of almost incompressible flow. J. Comput. Phys. 3, 80–93 (1968)zbMATHGoogle Scholar
  28. 28.
    Harlow, F.H., Amsden, A.A.: A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8, 197–213 (1971)zbMATHGoogle Scholar
  29. 29.
    Harlow, F.H., Welch, J.E., et al.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluid. 8(12), 21–82 (1965)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Herbin, R., Latché, J-C., Therme, N.: Consistency results of a class of staggered schemes for the compressible Euler equations. Article in preparation, Chapter 3 of the PhD thesis of N. Therme. https://old.i2m.univ-amu.fr/~nicolas.therme/Manuscrit_These.pdf
  31. 31.
    Hošek, R., She, B.: Stability and consistency of a finite difference scheme for compressible viscous isentropic flow in multi-dimension. J. Numer. Math. 26(3), 111–140 (2018)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator splitting. J. Comput. Phys. 62, 40–65 (1985)MathSciNetGoogle Scholar
  33. 33.
    Issa, R.I., Gosman, A.D., Watkins, A.P.: The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J. Comput. Phys. 62, 66–82 (1986)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Jovanović, V., Rohde, C.: Finite-volume schemes for friedrichs systems in multiple space dimensions: a priori and a posteriori error estimates. Numer. Methods Partial Differ. Equ. 21(1), 104–131 (2005)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Karki, K.C., Patankar, S.V.: Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. AIAA J. 27, 1167–1174 (1989)Google Scholar
  36. 36.
    Karper, T.K.: A convergent FEM-DG method for the compressible Navier–Stokes equations. Numer. Math. 125(3), 441–510 (2013)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Lions, P-L.: Mathematical topics in fluid mechanics, vol. 2, Volume 10 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, New York (1998)Google Scholar
  38. 38.
    Novotný, A., Straskraba, I.: Introduction to the Mathematical Theory of Compressible Flow, vol. 27. Oxford University Press, New York (2004). Oxford Lecture Series in Mathematics and its ApplicationszbMATHGoogle Scholar
  39. 39.
    Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equ. 8(2), 97–111 (1992)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Valli, A., Zajaczkowski, W.M.: Navier–Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103(2), 259–296 (1986)MathSciNetzbMATHGoogle Scholar
  41. 41.
    van der Heul, D.R., Vuik, C., Wesseling, P.: Stability analysis of segregated solution methods for compressible flow. App. Numer. Math. 38, 257–274 (2001)MathSciNetzbMATHGoogle Scholar
  42. 42.
    van der Heul, D.R., Vuik, C., Wesseling, P.: A conservative pressure-correction method for flow at all speeds. Comput. Fluid 32, 1113–1132 (2003)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Vidović, D., Segal, A., Wesseling, P.: A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids. J. Comput. Phys. 217, 277–294 (2006)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Vila, J.-P., Villedieu, P.: Convergence of an explicit finite volume scheme for first order symmetric systems. Numerische Mathematik 94(3), 573–602 (2003)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Wall, C., Pierce, C.D., Moin, P.: A semi-implicit method for resolution of acoustic waves in low Mach number flows. J. Comput. Phys. 181, 545–563 (2002)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Wenneker, I., Segal, A., Wesseling, P.: A Mach-uniform unstructured staggered grid method. Int. J. Numer. Method Fluid 40, 1209–1235 (2002)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Wesseling, P.: Principles of Computational Fluid Dynamics, vol. 29. Springer, Berlin (2001). Springer Series in Computational MathematicszbMATHGoogle Scholar
  48. 48.
    Yovanovic, V.: An error estimate for a numerical scheme for the compressible Navier–Stokes system. Kragujev. J. Math. 30(1), 263–275 (2007)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Thierry Gallouët
    • 1
  • David Maltese
    • 2
    Email author
  • Antonin Novotny
    • 2
  1. 1.Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373MarseilleFrance
  2. 2.IMATH, EA 2134, Université de ToulonLa GardeFrance

Personalised recommendations