Variational convergence of discrete minimal surfaces
Article
First Online:
- 100 Downloads
Abstract
Building on and extending tools from variational analysis and relying on certain a priori assumptions, we prove Kuratowski convergence of sets of simplicial area minimizers to minimizers of the smooth Douglas–Plateau problem under simplicial refinement. This convergence is with respect to a topology that is finer than the topology of uniform convergence of both positions and surface normals.
Mathematics Subject Classification
49Q05 53A10 58E12Notes
Acknowledgements
The authors would like to thank Heiko von der Mosel for discussions on the regularity of minimal surfaces.
References
- 1.Brakke, K.A.: The surface evolver. Exp. Math. 1(2), 141–165 (1992). http://projecteuclid.org/euclid.em/1048709050
- 2.Courant, R.: Dirichlet’s Principle, Conformal Mapping, and Minimal Surfaces. Interscience Publishers Inc., New York (1950). Appendix by M. SchifferzbMATHGoogle Scholar
- 3.Dal Maso, G.: An Introduction to \(\varGamma \)-Convergence. Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston Inc., Boston, MA (1993). https://doi.org/10.1007/978-1-4612-0327-8 Google Scholar
- 4.Dierkes, U., Hildebrandt, S., Tromba, A.J.: Regularity of Minimal Surfaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 340, 2nd edn. Springer, Heidelberg (2010)zbMATHGoogle Scholar
- 5.Douglas, J.: A method of numerical solution of the problem of Plateau. Ann. Math. (2) 29(1–4), 180–188 (1927). https://doi.org/10.2307/1967991 MathSciNetzbMATHGoogle Scholar
- 6.Douglas, J.: Solution of the problem of Plateau. Trans. Am. Math. Soc. 33(1), 263–321 (1931). https://doi.org/10.2307/1989472 MathSciNetzbMATHGoogle Scholar
- 7.Douglas, J.: The most general form of the problem of Plateau. Am. J. Math. 61, 590–608 (1939)MathSciNetzbMATHGoogle Scholar
- 8.Dziuk, G.: An algorithm for evolutionary surfaces. Numer. Math. 58(6), 603–611 (1991). https://doi.org/10.1007/BF01385643 MathSciNetzbMATHGoogle Scholar
- 9.Dziuk, G., Hutchinson, J.E.: The discrete Plateau problem: algorithm and numerics. Math. Comput. 68(225), 1–23 (1999). https://doi.org/10.1090/S0025-5718-99-01025-X MathSciNetzbMATHGoogle Scholar
- 10.Dziuk, G., Hutchinson, J.E.: The discrete Plateau problem: convergence results. Math. Comput. 68(226), 519–546 (1999). https://doi.org/10.1090/S0025-5718-99-01026-1 MathSciNetzbMATHGoogle Scholar
- 11.Fukui, K., Nakamura, T.: A topological property of Lipschitz mappings. Topolo. Appl. 148(1–3), 143–152 (2005). https://doi.org/10.1016/j.topol.2004.08.005 MathSciNetzbMATHGoogle Scholar
- 12.Hardt, R., Simon, L.: Boundary regularity and embedded solutions for the oriented Plateau problem. Ann. of Math. (2) 110(3), 439–486 (1979). https://doi.org/10.2307/1971233 MathSciNetzbMATHGoogle Scholar
- 13.Hinze, M.: On the numerical approximation of unstable minimal surfaces with polygonal boundaries. Numer. Math. 73(1), 95–118 (1996). https://doi.org/10.1007/s002110050186 MathSciNetzbMATHGoogle Scholar
- 14.Lee, J.M.: Introduction to Smooth Manifolds, Graduate Texts in Mathematics. Springer, New York (2003). https://doi.org/10.1007/978-0-387-21752-9 Google Scholar
- 15.Micheli, M., Michor, P.W., Mumford, D.: Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds. Izv. Ross. Akad. Nauk. Ser. Mat. 77(3), 109–138 (2013). https://doi.org/10.4213/im7966 MathSciNetzbMATHGoogle Scholar
- 16.Michor, P.W., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005)MathSciNetzbMATHGoogle Scholar
- 17.Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1), 74–113 (2007). https://doi.org/10.1016/j.acha.2006.07.004 MathSciNetzbMATHGoogle Scholar
- 18.Moakher, M., Zéraï, M.: The Riemannian geometry of the space of positive-definite matrices and its application to the regularization of positive-definite matrix-valued data. J. Math. Imaging Vis. 40(2), 171–187 (2011). https://doi.org/10.1007/s10851-010-0255-x MathSciNetzbMATHGoogle Scholar
- 19.Munkres, J.R.: Topology, 2nd edn. Prentice Hall Inc., Upper Saddle River (2000)zbMATHGoogle Scholar
- 20.Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993). http://projecteuclid.org/euclid.em/1062620735
- 21.Pozzi, P.: The discrete Douglas problem: theory and numerics. Interfaces Free Bound. 6(2), 219–252 (2004). https://doi.org/10.4171/IFB/98 MathSciNetzbMATHGoogle Scholar
- 22.Pozzi, P.: The discrete Douglas problem: convergence results. IMA J. Numer. Anal. 25(2), 337–378 (2005). https://doi.org/10.1093/imanum/drh019 MathSciNetzbMATHGoogle Scholar
- 23.Radó, T.: On the problem of plateau. Ergebnisse der Mathematik und ihrer Grenzgebiete, Julius Springer, Berlin (1933)Google Scholar
- 24.Rivière, T.: Lipschitz conformal immersions from degenerating Riemann surfaces with \(L^2\)-bounded second fundamental forms. Adv. Calc. Var. 6(1), 1–31 (2013). https://doi.org/10.1515/acv-2012-0108 MathSciNetzbMATHGoogle Scholar
- 25.Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer, Berlin (1998). https://doi.org/10.1007/978-3-642-02431-3 Google Scholar
- 26.Tsuchiya, T.: Discrete solution of the Plateau problem and its convergence. Math. Comput. 49(179), 157–165 (1987). https://doi.org/10.2307/2008255 MathSciNetzbMATHGoogle Scholar
- 27.Wagner, H.J.: A contribution to the numerical approximation of minimal surfaces. Computing 19(1), 35–58 (1977)MathSciNetzbMATHGoogle Scholar
- 28.Whitehead, J.H.C.: On \(C^1\)-complexes. Ann. Math. 2(41), 809–824 (1940)zbMATHGoogle Scholar
- 29.Wilson Jr., W.L.: On discrete Dirichlet and Plateau problems. Numer. Math. 3, 359–373 (1961)MathSciNetzbMATHGoogle Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2018