Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 392, Issue 12, pp 1503–1513 | Cite as

Liver damage in bleomycin-induced pulmonary fibrosis in mice

  • V. R. Vásquez-Garzón
  • A. Ramírez-Cosmes
  • E. Reyes-Jiménez
  • G. Carrasco-Torres
  • S. Hernández-García
  • S. R. Aguilar-Ruiz
  • H. Torres-Aguilar
  • J. Alpuche
  • L. Pérez-Campos Mayoral
  • S. Pina-Canseco
  • J. Arellanes-Robledo
  • S. Villa-Treviño
  • R. Baltiérrez-HoyosEmail author
Original Article
  • 142 Downloads

Abstract

Pulmonary fibrosis is an emerging disease with a poor prognosis and high mortality rate that is even surpassing some types of cancer. This disease has been linked to the concomitant appearance of liver cirrhosis. Bleomycin-induced pulmonary fibrosis is a widely used mouse model that mimics the histopathological and biochemical features of human systemic sclerosis, an autoimmune disease that is associated with inflammation and expressed in several corporal systems as fibrosis or other alterations. To determine the effects on proliferation, redox and inflammation protein expression markers were analyzed by immunohistochemistry. Analyses showed a significant increase in protein oxidation levels by lipoperoxidation bio-products and in proliferation and inflammation processes. These phenomena were associated with the induction of the redox status in mice subjected to 100 U/kg bleomycin. These findings clearly show that the bleomycin model induces histopathological alterations in the liver and partially reproduces the complexity of systemic sclerosis. Our results using the bleomycin-induced pulmonary fibrosis model provide a protocol to investigate the mechanism underlying the molecular alteration found in the liver linked to systemic sclerosis.

Keywords

Liver damage Bleomycin Multiorgan disease Reactive oxygen species Proliferation 

Notes

Acknowledgements

The authors want to express their gratitude to the UPEAL-CINVESTAV staff and American Journal Experts (AJE). This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT), 270189-2016; from RBH, 178558 from SVT, 287162 from RBH, 290194 from VRVG, and Cátedra-CONACYT 2499-2014 (Molecular studies for the treatment of scleroderma) from RBH, VRVG, and JA.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Arellanes-Robledo J, Marquez-Rosado L, Perez-Carreon JI, Fattel-Fazenda S, Aguirre-Garcia J, Villa-Trevino S (2006) Celecoxib induces regression of putative preneoplastic lesions in rat liver. Anticancer Res 26:1271–1280PubMedGoogle Scholar
  2. Asano Y, Sato S (2013) Animal models of scleroderma: current state and recent development. Curr Rheumatol Rep 15:382PubMedGoogle Scholar
  3. Avouac J (2014) Mouse model of experimental dermal fibrosis: the bleomycin-induced dermal fibrosis. Methods Mol Biol 1142:91–98PubMedGoogle Scholar
  4. Bai Y, Li J, Zhao P, Li Y, Li M, Feng S, Qin Y, Tian Y, Zhou T (2018) A Chinese herbal formula ameliorates pulmonary fibrosis by inhibiting oxidative stress via upregulating Nrf2. Front Pharmacol 9:628PubMedPubMedCentralGoogle Scholar
  5. Bissell DM, Gores GJ, Laskin DL, Hoofnagle JH (2001) Drug-induced liver injury: mechanisms and test systems. Hepatology 33:1009–1013PubMedGoogle Scholar
  6. Bocchino M, Agnese S, Fagone E, Svegliati S, Grieco D, Vancheri C, Gabrielli A, Sanduzzi A, Avvedimento EV (2010) Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis. PLoS One 5:e14003PubMedPubMedCentralGoogle Scholar
  7. D'Angelo WA, Fries JF, Masi AT, Shulman LE (1969) Pathologic observations in systemic sclerosis (scleroderma). A study of fifty-eight autopsy cases and fifty-eight matched controls. Am J Med 46:428–440PubMedGoogle Scholar
  8. Das M, Boerma M, Goree JR, Lavoie EG, Fausther M, Gubrij IB, Pangle AK, Johnson LG, Dranoff JA (2014) Pathological changes in pulmonary circulation in carbon tetrachloride (CCl4)-induced cirrhotic mice. PLoS One 9:e96043PubMedPubMedCentralGoogle Scholar
  9. Desai VG, Aidoo A, Li J, Lyn-Cook LE, Casciano DA, Feuers RJ (2000) Effects of bleomycin on liver antioxidant enzymes and the electron transport system from ad libitum-fed and dietary-restricted female and male Fischer 344 rats. Nutr Cancer 36(1):42–51PubMedGoogle Scholar
  10. Distler JH, Feghali-Bostwick C, Soare A, Asano Y, Distler O, Abraham DJ (2017) Frontiers of antifibrotic therapy in systemic sclerosis. Arthritis Rheumatol 69:257–267PubMedGoogle Scholar
  11. Dik WA, McAnulty RJ, Versnel MA, Naber BA, Zimmermann LJ, Laurent GJ, Mutsaers SE (2003) Short course dexamethasone treatment following injury inhibits bleomycin induced fibrosis in rats. Thorax 58:765–771PubMedPubMedCentralGoogle Scholar
  12. Dong X, Li X, Li M, Chen M, Fan Q, Wei W (2017) Inhibitory effects of thalidomide on bleomycin-induced pulmonary fibrosis in rats via regulation of thioredoxin reductase and inflammations. Am J Transl Res 9:4390–4401PubMedPubMedCentralGoogle Scholar
  13. du Manoir S, Guillaud P, Camus E, Seigneurin D, Brugal G (1991) Ki-67 labeling in postmitotic cells defines different Ki-67 pathways within the 2c compartment. Cytometry 12:455–463PubMedGoogle Scholar
  14. Eslami A, Mathur AD, Jha KK, Wang H (2018) Acute liver failure secondary to ABVD use. BMJ Case RepGoogle Scholar
  15. Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxidative Med Cell Longev, 610813Google Scholar
  16. Galli A, Svegliati-Baroni G, Ceni E, Milani S, Ridolfi F, Salzano R, Tarocchi M, Grappone C, Pellegrini G, Benedetti A, Surrenti C, Casini A (2005) Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism. Hepatology 41:1074–1084PubMedGoogle Scholar
  17. Grygiel-Gorniak B, Puszczewicz M (2014) Oxidative damage and antioxidative therapy in systemic sclerosis. Mediat Inflamm, 389582Google Scholar
  18. Inghilleri S, Morbini P, Campo I, Zorzetto M, Oggionni T, Pozzi E, Luisetti M (2011) Factors influencing oxidative imbalance in pulmonary fibrosis: an immunohistochemical study. Pulm Med, 421409Google Scholar
  19. Islam MA, Alam F, Solayman M, Khalil MI, Kamal MA, Gan SH (2016) Dietary phytochemicals: natural swords combating inflammation and oxidation-mediated degenerative diseases. Oxidative Med Cell Longev, 5137431Google Scholar
  20. Jaroszeski MJ, Coppola D, Nesmith G, Pottinger C, Hyacinthe M, Benson K, Gilbert R, Heller R (2001) Effects of electrochemotherapy with bleomycin on normal liver tissue in a rat model. Eur J Cancer 37(3):414–421PubMedGoogle Scholar
  21. Joensuu H, Söderström KO, Nikkanen V (1986) Fatal necrosis of the liver during ABVD chemotherapy for Hodgkin’s disease. A case report. Cancer t 1 58(7):1437–1440Google Scholar
  22. Johnson SR (2015) New ACR EULAR guidelines for systemic sclerosis classification. Curr Rheumatol Rep 17:32PubMedGoogle Scholar
  23. Kaiserová H, den Hartog GJ, Simunek T, Schroterova L, Kvasnickova E, Bast A (2006) Iron is not involved in oxidative stress-mediated cytotoxicity of doxorubicin and bleomycin. Br J Pharmacol 149:920–930PubMedPubMedCentralGoogle Scholar
  24. Kandhare AD, Bodhankar SL, Mohan V, Thakurdesai PA (2017) Glycosides based standardized fenugreek seed extract ameliorates bleomycin-induced liver fibrosis in rats via modulation of endogenous enzymes. J Pharm Bioallied Sci 9:185–194PubMedPubMedCentralGoogle Scholar
  25. Karamalakova YD, Nikolova GD, Georgiev TK, Gadjeva VG, Tolekova AN (2019) Hepatoprotective properties of Curcuma longa L. extract in bleomycin-induced chronic hepatotoxicity. Drug Discov Ther 13:9–16PubMedGoogle Scholar
  26. Kato A, Bamba H, Shinohara M, Yamauchi A, Ota S, Kawamoto C, Yoshida Y (2005) Relationship between expression of cyclin D1 and impaired liver regeneration observed in fibrotic or cirrhotic rats. J Gastroenterol Hepatol 20:1198–1205PubMedGoogle Scholar
  27. King PD, Perry MC (2001) Hepatotoxicity of chemotherapy. Oncologist 6:162–176PubMedGoogle Scholar
  28. Kubben FJ, Peeters-Haesevoets A, Engels LG, Baeten CG, Schutte B, Arends JW, Stockbrugger RW, Blijham GH (1994) Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation. Gut 35:530–535PubMedPubMedCentralGoogle Scholar
  29. Lee R, Reese C, Bonner M, Tourkina E, Hajdu Z, Riemer EC, Silver RM, Visconti RP, Hoffman S (2014) Bleomycin delivery by osmotic minipump: similarity to human scleroderma interstitial lung disease. Am J Physiol Lung Cell Mol Physiol 306:L736–L748PubMedPubMedCentralGoogle Scholar
  30. Liang S, Kisseleva T, Brenner DA (2016) The role of NADPH oxidases (NOXs) in liver fibrosis and the activation of myofibroblasts. Front Physiol 7:17PubMedPubMedCentralGoogle Scholar
  31. Locke GR 3rd, Therneau TM, Ludwig J, Dickson ER, Lindor KD (1996) Time course of histological progression in primary biliary cirrhosis. Hepatology 23(1):52–56PubMedGoogle Scholar
  32. Makarev E, Izumchenko E, Aihara F, Wysocki PT, Zhu Q, Buzdin A, Sidransky D, Zhavoronkov A, Atala A (2016) Common pathway signature in lung and liver fibrosis. Cell Cycle 15:1667–1673PubMedPubMedCentralGoogle Scholar
  33. Marie I, Levesque H, Tranvouez JL, Francois A, Riachi G, Cailleux N, Courtois H (2001) Autoimmune hepatitis and systemic sclerosis: a new overlap syndrome? Rheumatology (Oxford) 40:102–106Google Scholar
  34. Marí-Alfonso B, Simeon-Aznar CP, Guillen-Del Castillo A, Rubio-Rivas M, Trapiella-Martinez L, Todoli-Parra JA, Rodriguez Carballeira M, Marin-Ballve A, Iniesta-Arandia N et al (2017) Hepatobiliary involvement in systemic sclerosis and the cutaneous subsets: characteristics and survival of patients from the Spanish RESCLE Registry. Semin Arthritis Rheum S0049-0172(17):30288–30283Google Scholar
  35. Matucci Cerinic M, Kahaleh MB (2002) Beauty and the beast. The nitric oxide paradox in systemic sclerosis. Rheumatology (Oxford) 41:843–847Google Scholar
  36. Nagano J, Iyonaga K, Kawamura K, Yamashita A, Ichiyasu H, Okamoto T, Suga M, Sasaki Y, Kohrogi H (2006) Use of tacrolimus, a potent antifibrotic agent, in bleomycin-induced lung fibrosis. Eur Respir J 27(3):460–469PubMedGoogle Scholar
  37. Nihtyanova SI, Tang EC, Coghlan JG, Wells AU, Black CM, Dento CP (2010) Improved survival in systemic sclerosis is associated with better ascertainment of internal organ disease: a retrospective cohort study. QJM 103:109–115PubMedGoogle Scholar
  38. Nuver J, Lutke Holzik MF, van Zweeden M, Hoekstra HJ, Meijer C, Suurmeijer AJ, Groen HJ, Hofstra RM, Sluiter WJ, Groen H, Sleijfer DT, Gietema JA (2005) Genetic variation in the bleomycin hydrolase gene and bleomycin-induced pulmonary toxicity in germ cell cancer patients. Pharmacogenet Genomics 15:399–340PubMedGoogle Scholar
  39. Schmidt HH, Pollock JS, Nakane M, Forstermann U, Murad F (1992) Ca2+/calmodulin-regulated nitric oxide synthases. Cell Calcium 13:427–434PubMedGoogle Scholar
  40. Schuppan D, Ruehl M, Somasundaram R, Hahn EG (2001) Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis 21:351–372PubMedGoogle Scholar
  41. Schwartz DR, Homanics GE, Hoyt DG, Klein E, Abernethy J, Lazo JS (1999) The neutral cysteine protease bleomycin hydrolase is essential for epidermal integrity and bleomycin resistance. Proc Natl Acad Sci U S A 96:4680–4685PubMedPubMedCentralGoogle Scholar
  42. Tashiro M, Izumikawa K, Yoshioka D, Nakamura S, Kurihara S, Sakamoto N, Seki M, Kakeya H, Yamamoto Y, Yanagihara K, Mukae H, Hayashi T, Fukushima K, Tashiro T, Kohno S (2008) Lung Fibrosis 10 Years after Cessation of Bleomycin Therapy. Tohoku J Exp Med 216(1):77–80.  https://doi.org/10.1620/tjem.216.77 PubMedGoogle Scholar
  43. Umezawa H, Maeda K, Takeuchi T, Okami Y (1966) New antibiotics, bleomycin A and B. J Antibiot (Tokyo) 19:200–209Google Scholar
  44. Vaidya PJ, Sandeepa HS, Singh T, Susheel Kumar SK, Bhargava R, Ramakrishnan G, Chhajed PN (2016) Combined prednisolone and pirfenidone in bleomycin-induced lung disease. J Cancer Res Ther 12(3):1198–1202PubMedGoogle Scholar
  45. Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J, Willoughby DA (1994) Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci U S A 91:2046–2050PubMedPubMedCentralGoogle Scholar
  46. Varga J, Abraham D (2007) Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest 117:557–567PubMedPubMedCentralGoogle Scholar
  47. Vásquez-Garzón VR, Arellanes-Robledo J, Garcia-Roman R, Aparicio-Rautista DI, Villa-Trevino S (2009) Inhibition of reactive oxygen species and pre-neoplastic lesions by quercetin through an antioxidant defense mechanism. Free Radic Res 43:128–137PubMedGoogle Scholar
  48. Wang J, Xu L, Chen Q, Zhang Y, Hu Y, Yan L (2015) Bone mesenchymal stem cells overexpressing FGF4 contribute to liver regeneration in an animal model of liver cirrhosis. Int J Clin Exp Med 8:12774–12782PubMedPubMedCentralGoogle Scholar
  49. Watanabe T, Nishimoto T, Mlakar L, Heywood J, Malaab M, Hoffman S, Feghali-Bostwick C (2017) Optimization of a murine and human tissue model to recapitulate dermal and pulmonary features of systemic sclerosis. PLoS One 12:e0179917PubMedPubMedCentralGoogle Scholar
  50. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210PubMedPubMedCentralGoogle Scholar
  51. Yagoda A, Mukherji B, Young C, Etcubanas E, Lamonte C, Smith JR, Tan CT, Krakoff IH (1972) Bleomycin, an antitumor antibiotic. Clinical experience in 274 patients. Ann Intern Med 77(6):861–870PubMedGoogle Scholar
  52. Yahyapour R, Motevaseli E, Rezaeyan A, Abdollahi H, Farhood B, Cheki M, Rezapoor S, Shabeeb D, Musa AE, Najafi M, Villa V (2018) Reduction-oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol 20:975–988PubMedGoogle Scholar
  53. Yamamoto T, Takagawa S, Katayama I, Yamazaki K, Hamazaki Y, Shinkai H, Nishioka K (1999) Animal model of sclerotic skin. I: local injections of bleomycin induce sclerotic skin mimicking scleroderma. J Invest Dermatol 112:456–462PubMedGoogle Scholar
  54. Yamamoto T, Nishioka K (2005) Cellular and molecular mechanisms of bleomycin-induced murine scleroderma: current update and future perspective. Exp Dermatol 14:81–95PubMedGoogle Scholar
  55. Zmuc J, Gasljevic G, Sersa G, Edhemovic I, Boc N, Seliskar A, Plavec T, Brloznik M, Milevoj N, Brecelj E, Kos B, Izlakar J, Jarm T, Snoj M, Stukelj M, Miklavcic D, Cemazar M (2019) Large liver blood vessels and bile ducts are not damaged by electrochemotherapy with bleomycin in pigs. Sci Rep 9(1):3649PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • V. R. Vásquez-Garzón
    • 1
  • A. Ramírez-Cosmes
    • 2
  • E. Reyes-Jiménez
    • 2
  • G. Carrasco-Torres
    • 3
  • S. Hernández-García
    • 4
  • S. R. Aguilar-Ruiz
    • 2
  • H. Torres-Aguilar
    • 5
  • J. Alpuche
    • 1
  • L. Pérez-Campos Mayoral
    • 6
  • S. Pina-Canseco
    • 6
  • J. Arellanes-Robledo
    • 7
  • S. Villa-Treviño
    • 4
  • R. Baltiérrez-Hoyos
    • 1
    Email author
  1. 1.CONACYT-Facultad de Medicina y CirugíaUniversidad Autónoma Benito Juárez de OaxacaOaxacaMexico
  2. 2.Facultad de Medicina y CirugíaUniversidad Autónoma Benito Juárez de OaxacaOaxacaMexico
  3. 3.CINVESTAV, Programa de Nanociencias y NanotecnologíaCiudad de MéxicoMexico
  4. 4.CINVESTAV, Departamento de Biología CelularCiudad de MéxicoMexico
  5. 5.Facultad de Ciencias QuímicasUniversidad Autónoma Benito Juárez de OaxacaOaxacaMexico
  6. 6.Centro de Investigación Facultad de MedicinaUNAM-UABJOOaxacaMexico
  7. 7.CONACYT-Instituto Nacional de Medicina GenómicaCiudad de MéxicoMexico

Personalised recommendations