Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 392, Issue 2, pp 229–241 | Cite as

After standard dosage of piperacillin plasma concentrations of drug are subtherapeutic in burn patients

  • Katharina Olbrisch
  • Tobias Kisch
  • Julia Thern
  • Evelyn Kramme
  • Jan Rupp
  • Tobias Graf
  • Sebastian G. Wicha
  • Peter Mailänder
  • Walter RaaschEmail author
Original Article


Infections are a major problem in patients with burn diseases. Mortality is high despite antibiotic therapy as studies are controversial concerning drug underdosing. The aims of this prospective, observational study were to monitor plasma concentrations of piperacillin during standard piperacillin/tazobactam treatment in 20 burn patients and 16 controls from the intensive care unit (ICU) and to optimize doses by in silico analyses. Piperacillin/tazobactam (4/0.5 g, tid) was administered over 0.5 h. Blood samples were taken at 1, 4, and 7.5 h after the end of the infusion. Free piperacillin plasma concentrations were determined. Pharmacokinetic parameters and in silico analysis results were calculated using the freeware TDMx. The primary target was defined as percentage of the day (fT>1xMIC; fT>4xMIC) when piperacillin concentrations exceeded 1xMIC/4xMIC (minimum inhibitory concentration), considering a MIC breakpoint of 16 mg/L for Pseudomonas aeruginosa. In an off-label approach, two burn patients were treated with 8/1 g piperacillin/tazobactam, 3 h qid. fT>1xMIC (55 ± 22% vs. 77 ± 24%) and fT>4xMIC (17 ± 11% vs. 30 ± 11%) were lower in burn than in ICU patients after 4/0.5 g, 0.5 h, tid. In silico analyses indicated that fT>1xMIC (93 ± 12% burn, 97 ± 4% ICU) and fT>4xMIC (62 ± 23% burn, 84 ± 19% ICU) values increase by raising the piperacillin dosage to 8/1 g qid and prolonging the infusion time to 3 h. Off-label treatment results were similar to in silico data for burn patients (84%fT>1xMIC and 47%fT>4xMIC). Standard dosage regimens for piperacillin/tazobactam resulted in subtherapeutic piperacillin concentrations in burn and ICU patients. Dose adjustments via in silico analyses can help to optimize antibiotic therapy and to predict respective concentrations in vivo. Trial registration: NCT03335137, registered 07.11.2017, retrospectively.


Burn patients Piperacillin Dosing simulation Pharmacokinetic In silico analyses 



Abbreviated Burn Severity Risk Index


Acute kidney injury


Augmented renal clearance




Creatinine clearance




Intensive care unit


Minimal inhibition concentration





SAPS II score

Simplified Acute Physiology Score


Serum creatinine


Half-life time




Total burn surface area


Therapeutic drug monitoring


Therapeutic Intervention Scoring System


Volume of distribution


Plasma protein binding


Three times a day


Four times a day


Once a day



The authors gratefully acknowledge Prof. Dr. Frieder Kees (Institute of Pharmacology, University of Regensburg) for his support in establishing HPLC analysis, Dr. Reinhard Vonthein (Institute of Medical Biometry and Statistics, University of Lübeck) for assistance in power analysis, Ines Stölting for assistance in HPLC analysis, and Sherryl Sundell for improving the English style.

Authors’ contributions

KO, TK, EK, JT, PM, and WR conceived the study. KO, JT, TK, EK, PM, TG, and WR were involved in protocol development, ethical approval, and implementation. KO, TK, TG, and WR collected the data. KO and WR completed the laboratory analysis and quality assurance. KO, SW, and WR performed the statistical and pharmacokinetic analyses. KO and WR wrote the manuscript draft, and all of the remaining authors contributed to subsequent revisions. WR takes responsibility for archiving the data and guarantees the integrity of the paper from inception to publication. All of the authors have read and approved the article for publication.


The study was funded by the Department of Pharmacy of the University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.

Compliance with ethical standards

Ethics approval and consent to participate

This study was approved by the ethics committee of the University (reference number 13-275).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

210_2018_1573_MOESM1_ESM.docx (183 kb)
ESM 1 (DOCX 183 kb)


  1. Alharbi Z, Piatkowski A, Dembinski R, Reckort S, Grieb G, Kauczok J, Pallua N (2012) Treatment of burns in the first 24 hours: simple and practical guide by answering 10 questions in a step-by-step form. World J Emerg Surg 7:13. CrossRefGoogle Scholar
  2. Avni T, Levcovich A, Ad-El DD, Leibovici L, Paul M (2010) Prophylactic antibiotics for burns patients: systematic review and meta-analysis. BMJ 340:c241. CrossRefGoogle Scholar
  3. Barajas-Nava LA, López-Alcalde J, Roqué i Figuls M, Solà I, Bonfill Cosp X (2013) Antibiotic prophylaxis for preventing burn wound infection. Cochrane Database Syst Rev CD008738.
  4. Bergan T (1981) Overview of acylureidopenicillin pharmacokinetics. Scand J Infect Dis Suppl 29:33–48Google Scholar
  5. Blanchet B, Jullien V, Vinsonneau C, Tod M (2008) Influence of burns on pharmacokinetics and pharmacodynamics of drugs used in the care of burn patients. Clin Pharmacokinet 47:635–654. CrossRefGoogle Scholar
  6. Bourget P, Lesne-Hulin A, Le Reveillé R, Le Bever H, Carsin H (1996) Clinical pharmacokinetics of piperacillin-tazobactam combination in patients with major burns and signs of infection. Antimicrob Agents Chemother 40:139–145CrossRefGoogle Scholar
  7. Briscoe SE, McWhinney BC, Lipman J, Roberts JA, Ungerer JPJ (2012) A method for determining the free (unbound) concentration of ten beta-lactam antibiotics in human plasma using high performance liquid chromatography with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci 907:178–184. CrossRefGoogle Scholar
  8. Bulitta JB, Duffull SB, Kinzig-Schippers M, Holzgrabe U, Stephan U, Drusano GL, Sörgel F (2007) Systematic comparison of the population pharmacokinetics and pharmacodynamics of piperacillin in cystic fibrosis patients and healthy volunteers. Antimicrob Agents Chemother 51:2497–2507. CrossRefGoogle Scholar
  9. Butterfield JM, Lodise TP, Beegle S, Rosen J, Farkas J, Pai MP (2014) Pharmacokinetics and pharmacodynamics of extended-infusion piperacillin/tazobactam in adult patients with cystic fibrosis-related acute pulmonary exacerbations. J Antimicrob Chemother 69:176–179. CrossRefGoogle Scholar
  10. Cartotto R, Callum J (2012) A review of the use of human albumin in burn patients. J Burn Care Res 33:702–717. CrossRefGoogle Scholar
  11. Chim H, Tan BH, Song C (2007) Five-year review of infections in a burn intensive care unit: high incidence of Acinetobacter baumannii in a tropical climate. Burns 33:1008–1014. CrossRefGoogle Scholar
  12. Church D, Elsayed S, Reid O, Winston B, Lindsay R (2006) Burn wound infections. Clin Microbiol Rev 19:403–434. CrossRefGoogle Scholar
  13. Conil JM, Georges B, Fourcade O, Seguin T, Lavit M, Samii K, Houin G, Tack I, Saivin S (2007a) Assessment of renal function in clinical practice at the bedside of burn patients. Br J Clin Pharmacol 63:583–594. CrossRefGoogle Scholar
  14. Conil JM, Georges B, Lavit M, Laguerre J, Samii K, Houin G, Saivin S (2007b) A population pharmacokinetic approach to ceftazidime use in burn patients: influence of glomerular filtration, gender and mechanical ventilation. Br J Clin Pharmacol 64:27–35. CrossRefGoogle Scholar
  15. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26:1–10 quiz 11-12CrossRefGoogle Scholar
  16. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, Ramsay G, Zimmerman JL, Vincent JL, Levy MM, Surviving Sepsis Campaign Management Guidelines Committee (2004) Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 32:858–873CrossRefGoogle Scholar
  17. Demling RH (2005) The burn edema process: current concepts. J Burn Care Rehabil 26:207–227CrossRefGoogle Scholar
  18. Doh K, Woo H, Hur J, Yim H, Kim J, Chae H, Han S, Yim DS (2010) Population pharmacokinetics of meropenem in burn patients. J Antimicrob Chemother 65:2428–2435. CrossRefGoogle Scholar
  19. Fachinformation Piperacillin/Tazobactam 4 g / 0,5 g Pulver zur Herstellung einer Infusionslösung (2015). https://wwwfachinfode/suche/fi/013311. Assessed August 2015Google Scholar
  20. Felton TW, Roberts JA, Lodise TP, Guilder MV, Boselli E, Neely MN, Hope WW (2014) Individualization of piperacillin dosing for critically ill patients: dosing software to optimize antimicrobial therapy. Antimicrob Agents Chemother 58:4094–4102. CrossRefGoogle Scholar
  21. Gin A, Dilay L, Karlowsky JA, Walkty A, Rubinstein E, Zhanel GG (2007) Piperacillin-tazobactam: a beta-lactam/beta-lactamase inhibitor combination. Expert Rev Anti-Infect Ther 5:365–383. CrossRefGoogle Scholar
  22. Guilabert P, Usúa G, Martín N, Abarca L, Barret JP, Colomina MJ (2016) Fluid resuscitation management in patients with burns: update. Br J Anaesth 117:284–296. CrossRefGoogle Scholar
  23. Jaruratanasirikul S, Sriwiriyajan S, Punyo J (2005) Comparison of the pharmacodynamics of meropenem in patients with ventilator-associated pneumonia following administration by 3-hour infusion or bolus injection. Antimicrob Agents Chemother 49:1337–1339. CrossRefGoogle Scholar
  24. Jeon S, Han S, Lee J, Hong T, Paek J, Woo H, Yim D-S (2014) Population pharmacokinetic analysis of piperacillin in burn patients. Antimicrob Agents Chemother 58:3744–3751. CrossRefGoogle Scholar
  25. Li C, Du X, Kuti JL, Nicolau DP (2007) Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother 51:1725–1730. CrossRefGoogle Scholar
  26. Mann EA, Baun MM, Meininger JC, Wade CE (2012) Comparison of mortality associated with sepsis in the burn, trauma, and general intensive care unit patient: a systematic review of the literature. Shock 37:4–16. CrossRefGoogle Scholar
  27. McKinnon PS, Paladino JA, Schentag JJ (2008) Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents 31:345–351. CrossRefGoogle Scholar
  28. McManus AT, Mason AD, McManus WF, Pruitt BA (1985) Twenty-five year review of Pseudomonas aeruginosa bacteremia in a burn center. Eur J Clin Microbiol 4:219–223CrossRefGoogle Scholar
  29. McWhinney BC, Wallis SC, Hillister T, Roberts JA, Lipman J, Ungerer JPJ (2010) Analysis of 12 beta-lactam antibiotics in human plasma by HPLC with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci 878:2039–2043. CrossRefGoogle Scholar
  30. Mir MA, Khurram MF, Khan AH (2017) What should be the antibiotic prescription protocol for burn patients admitted in the department of burns, plastic and reconstructive surgery. Int Wound J 14:194–197. CrossRefGoogle Scholar
  31. Mohd Hafiz A-A, Staatz CE, Kirkpatrick CMJ, Lipman J, Roberts JA (2012) Continuous infusion vs. bolus dosing: implications for beta-lactam antibiotics. Minerva Anestesiol 78:94–104Google Scholar
  32. Patel BM, Paratz J, See NC, Muller MJ, Rudd M, Paterson D, Briscoe SE, Ungerer J, McWhinney BC, Lipman J, Roberts JA (2012) Therapeutic drug monitoring of beta-lactam antibiotics in burns patients--a one-year prospective study. Ther Drug Monit 34:160–164. CrossRefGoogle Scholar
  33. Rafla K, Tredget EE (2011) Infection control in the burn unit. Burns 37:5–15. CrossRefGoogle Scholar
  34. Roberts JA (2011) Using PK/PD to optimize antibiotic dosing for critically ill patients. Curr Pharm Biotechnol 12:2070–2079CrossRefGoogle Scholar
  35. Roberts JA, Kruger P, Paterson DL, Lipman J (2008) Antibiotic resistance--what’s dosing got to do with it? Crit Care Med 36:2433–2440. CrossRefGoogle Scholar
  36. Roberts JA, Ulldemolins M, Roberts MS, McWhinney B, Ungerer J, Paterson DL, Lipman J (2010) Therapeutic drug monitoring of beta-lactams in critically ill patients: proof of concept. Int J Antimicrob Agents 36:332–339. CrossRefGoogle Scholar
  37. Roberts JA, Paul SK, Akova M, Bassetti M, de Waele JJ, Dimopoulos G, Kaukonen KM, Koulenti D, Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Lipman J, DALI Study, Roberts JA, Lipman J, Starr T, Wallis SC, Paul SK, Margarit Ribas A, de Waele JJ, de Crop L, Spapen H, Wauters J, Dugernier T, Jorens P, Dapper I, de Backer D, Taccone FS, Rello J, Ruano L, Afonso E, Alvarez-Lerma F, Gracia-Arnillas MP, Fernandez F, Feijoo N, Bardolet N, Rovira A, Garro P, Colon D, Castillo C, Fernado J, Lopez MJ, Fernandez JL, Arribas AM, Teja JL, Ots E, Carlos Montejo J, Catalan M, Prieto I, Gonzalo G, Galvan B, Blasco MA, Meyer E, del Nogal F, Vidaur L, Sebastian R, Garde PM, Martin Velasco MM, Zaragoza Crespo R, Esperatti M, Torres A, Montravers P, Baldesi O, Dupont H, Mahjoub Y, Lasocki S, Constantin JM, Payen JF, Martin C, Albanese J, Malledant Y, Pottecher J, Lefrant JY, Jaber S, Joannes-Boyau O, Orban C, Ostermann M, McKenzie C, Berry W, Smith J, Lei K, Rubulotta F, Gordon A, Brett S, Stotz M, Templeton M, Rhodes A, Ebm C, Moran C, Kaukonen KM, Pettila V, Dimopoulos G, Koulenti D, Xristodoulou A, Theodorou V, Kouliatsis G, Sertaridou E, Anthopoulos G, Choutas G, Rantis T, Karatzas S, Balla M, Papanikolaou M, Myrianthefs P, Gavala A, Fildisis G, Koutsoukou A, Kyriakopoulou M, Petrochilou K, Kompoti M, Michalia M, Clouva-Molyvdas FM, Gkiokas G, Nikolakopoulos F, Psychogiou V, Malliotakis P, Akoumianaki E, Lilitsis E, Koulouras V, Nakos G, Kalogirou M, Komnos A, Zafeiridis T, Chaintoutis C, Arvaniti K, Matamis D, Chaintoutis C, Kydona C, Gritsi-Gerogianni N, Giasnetsova T, Giannakou M, Soultati I, Chytas I, Antoniadou E, Antipa E, Lathyris D, Koukoubani T, Paraforou T, Spiropoulou K, Bekos V, Spring A, Kalatzi T, Nikolaou H, Laskou M, Strouvalis I, Aloizos S, Kapogiannis S, Soldatou O, Bassetti M, Adembri C, Villa G, Giarratano A, Maurizio Raineri S, Cortegiani A, Montalto F, Strano MT, Ranieri VM, Sandroni C, de Pascale G, Molin A, Pelosi P, Montagnani L, Urbino R, Mastromauro I, de Rosa FG, Ranieri VM, Cardoso T, Afonso S, Goncalves-Pereira J, Baptista JP, Akova M, Ozveren A (2014) DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis 58:1072–1083. CrossRefGoogle Scholar
  38. Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, Bellomo R, Lipman J (2016) Continuous versus intermittent β-lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med 194:681–691. CrossRefGoogle Scholar
  39. Schleibinger M, Steinbach CL, Töpper C, Kratzer A, Liebchen U, Kees F, Salzberger B, Kees MG (2015) Protein binding characteristics and pharmacokinetics of ceftriaxone in intensive care unit patients. Br J Clin Pharmacol 80:525–533. CrossRefGoogle Scholar
  40. Shiu J, Wang E, Tejani AM, Wasdell M (2013) Continuous versus intermittent infusions of antibiotics for the treatment of severe acute infections. Cochrane Database Syst Rev CD008481.
  41. Shorr AF (2009) Review of studies of the impact on gram-negative bacterial resistance on outcomes in the intensive care unit. Crit Care Med 37:1463–1469. CrossRefGoogle Scholar
  42. Sime FB et al (2017) Are standard doses of piperacillin in piperacillin/tazobactam regimens adequate for the management of febrile neutropenia? Answers from population pharmacokinetic modelling and Monte Carlo simulations. Antimicrob Agents Chemother.
  43. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama 315:801–810. CrossRefGoogle Scholar
  44. Sinnollareddy MG, Roberts MS, Lipman J, Roberts JA (2012) β-Lactam pharmacokinetics and pharmacodynamics in critically ill patients and strategies for dose optimization: a structured review. Clin Exp Pharmacol Physiol 39:489–496. CrossRefGoogle Scholar
  45. Taccone FS, Laterre PF, Dugernier T, Spapen H, Delattre I, Witebolle X, de Backer D, Layeux B, Wallemacq P, Vincent JL, Jacobs F (2010) Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care 14:R126. CrossRefGoogle Scholar
  46. Tagami T, Matsui H, Fushimi K, Yasunaga H (2016) Prophylactic antibiotics may improve outcome in patients with severe burns requiring mechanical ventilation: propensity score analysis of a Japanese Nationwide Database. Clin Infect Dis 62:60–66. CrossRefGoogle Scholar
  47. Tam VH, McKinnon PS, Akins RL, Rybak MJ, Drusano GL (2002) Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother 50:425–428CrossRefGoogle Scholar
  48. Tam VH, Schilling AN, Neshat S, Poole K, Melnick DA, Coyle EA (2005) Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:4920–4927. CrossRefGoogle Scholar
  49. TDMx - model-supported Therapeutic Drug Monitoring for Precision Dosing (2017). Assessed Nov 2017
  50. The European Committee on Antimicrobial Susceptibility Testing - EUCAST (2017). Assessed Oktober 2017
  51. Tredget EE, Shankowsky HA, Rennie R, Burrell RE, Logsetty S (2004) Pseudomonas infections in the thermally injured patient. Burns 30:3–26CrossRefGoogle Scholar
  52. Udy AA, Varghese JM, Altukroni M, Briscoe S, McWhinney BC, Ungerer JP, Lipman J, Roberts JA (2012) Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest 142:30–39. CrossRefGoogle Scholar
  53. Udy AA, Lipman J, Jarrett P, Klein K, Wallis SC, Patel K, Kirkpatrick C, Kruger PS, Paterson DL, Roberts MS, Roberts JA (2015) Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance? Crit Care 19:28. CrossRefGoogle Scholar
  54. Vardakas KZ, Voulgaris GL, Maliaros A, Samonis G, Falagas ME (2018) Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials. Lancet Infect Dis 18:108–120. CrossRefGoogle Scholar
  55. Weinbren MJ (1999) Pharmacokinetics of antibiotics in burn patients. J Antimicrob Chemother 44:319–327. CrossRefGoogle Scholar
  56. Wicha SG, Kees MG, Solms A, Minichmayr IK, Kratzer A, Kloft C (2015) TDMx: a novel web-based open-access support tool for optimising antimicrobial dosing regimens in clinical routine. Int J Antimicrob Agents 45:442–444. CrossRefGoogle Scholar
  57. Witkowski W, Kawecki M, Surowiecka-Pastewka A, Klimm W, Szamotulska K, Niemczyk S (2016) Early and late acute kidney injury in severely burned patients. Med Sci Monit 22:3755–3763CrossRefGoogle Scholar
  58. Wong G, Briscoe S, Adnan S, McWhinney B, Ungerer J, Lipman J, Roberts JA (2013) Protein binding of β-lactam antibiotics in critically ill patients: can we successfully predict unbound concentrations? Antimicrob Agents Chemother 57:6165–6170. CrossRefGoogle Scholar
  59. Yoshino Y, Ohtsuka M, Kawaguchi M, Sakai K, Hashimoto A, Hayashi M, Madokoro N, Asano Y, Abe M, Ishii T, Isei T, Ito T, Inoue Y, Imafuku S, Irisawa R, Ohtsuka M, Ogawa F, Kadono T, Kawakami T, Kukino R, Kono T, Kodera M, Takahara M, Tanioka M, Nakanishi T, Nakamura Y, Hasegawa M, Fujimoto M, Fujiwara H, Maekawa T, Matsuo K, Yamasaki O, le Pavoux A, Tachibana T, Ihn H, The Wound/Burn Guidelines Committee (2016) The wound/burn guidelines - 6: guidelines for the management of burns. J Dermatol 43:989–1010. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Experimental and Clinical Pharmacology and ToxicologyUniversity of LübeckLübeckGermany
  2. 2.Department of PharmacyUniversity Hospital Schleswig-HolsteinLübeckGermany
  3. 3.Clinic of Plastic SurgeryUniversity Hospital Schleswig-HolsteinLübeckGermany
  4. 4.Department of Infectious Diseases and MicrobiologyUniversity Hospital Schleswig-HolsteinLübeckGermany
  5. 5.University Heart Centre Lübeck, Department of Cardiology, Angiology and Intensive Care MedicineUniversity Hospital Schleswig-HolsteinLübeckGermany
  6. 6.Clinical Pharmacy, Institute of PharmacyUniversity of HamburgHamburgGermany
  7. 7.DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/LübeckLübeckGermany
  8. 8.CBBM (Center of Brain, Behavior and Metabolism)University of LübeckLübeckGermany

Personalised recommendations