Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 392, Issue 1, pp 89–101 | Cite as

Oral ethinylestradiol-levonorgestrel attenuates cardiac glycogen and triglyceride accumulation in high fructose female rats by suppressing pyruvate dehydrogenase kinase-4

  • Kehinde Samuel Olaniyi
  • Lawrence Aderemi OlatunjiEmail author
Original Article
  • 63 Downloads

Abstract

Fructose (FRU) intake has increased dramatically in recent decades with a corresponding increased incidence of insulin resistance (IR), particularly in young adults. The use of oral ethinylestradiol-levonorgestrel (EEL) formulation is also common among young women worldwide. The present study aimed at determining the effect of EEL on high fructose-induced cardiac triglyceride (TG) and glycogen accumulation. The study also investigated the possible involvement of pyruvate dehydrogenase kinase-4 (PDK-4) in EEL and/or high fructose metabolic effects on the heart. Ten-week-old female Wistar rats were allotted into four groups. The control, EEL, FRU, and EEL + FRU rats received distilled water (vehicle, p.o.), 1.0 μg ethinylestradiol plus 5.0 μg levonorgestrel (p.o.), 10% fructose (w/v), and 1.0 μg ethinylestradiol plus 5.0 μg levonorgestrel and 10% fructose, respectively, daily for 8 weeks. Data showed that EEL or high fructose caused IR‚ impaired glucose tolerance‚ hyperlipidemia‚ increased plasma lactate, lactate dehydrogenase, PDK-4, uric acid, xanthine oxidase (XO), adenosine deaminase (ADA), malondialdehyde (MDA), cardiac uric acid, TG, TG/HDL- cholesterol, glycogen synthesis, MDA, and visceral fat content and reduced glutathione. High fructose also resulted in impaired pancreatic β-cell function, hyperglycemia, and increased cardiac PDK-4, lactate synthesis, and mass. Nonetheless, these alterations were ameliorated in EEL plus high fructose rats. This study demonstrates that high fructose-induced myocardial TG and glycogen accumulation is attributable to increased PDK-4. Besides, EEL could be a useful pharmacological utility for protection against cardiac dysmetabolism by inhibiting PDK-4.

Keywords

Cardiac dysfunction Glycogen synthesis Insulin resistance Lipid accumulation PDK-4 Metabolic syndrome 

Notes

Acknowledgements

The authors appreciate the technical support from the HOPE Cardiometabolic Research Team, Ilorin, Nigeria.

Author contribution

KSO and LAO conceived and designed the research. KSO conducted the experiments. LAO contributed to the new reagents and analytical kits. KSO and LAO analyzed and interpreted the data. KSO drafted the manuscript. KSO and LAO read and approved the final manuscript.

Compliance with ethical standards

The investigation was conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and was approved by the Institutional Ethical Review Board of University of Ilorin, and every effort was made to minimize both the number of animals used and their suffering.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Adeyanju OA, Soetan OA, Soladoye AO, Olatunji LA (2018) Oral hormonal therapy with ethinylestradiol/levonorgestrel improves insulin resistance, obesity and glycogen synthase kinase-3 independent of circulating mineralocorticoid in estrogen-deficient rats. Can J Physiol Pharmacol 96(6):577–586CrossRefGoogle Scholar
  2. Arikawa E, Ma RC, Isshiki K, Luptak I, He Z, Yasuda Y et al (2007) Effects of insulin replacements, inhibitors of angiotensin, and PKC beta’s actions to normalize cardiac gene expression and fuel metabolism in diabetic rats. Diabetes 56:1410–1420CrossRefGoogle Scholar
  3. Bergamini C, Cicoira M, Rossi A, Vassanelli C (2009) Oxidative stress and hyperuricaemia: pathophysiology, clinical relevance, and therapeutic implications in chronic heart failure. Eur J Heart Fail 11:444–452CrossRefGoogle Scholar
  4. Bodiga VL, Eda SR, Bodiga S (2014) Advanced glycation end products: role in 496 pathology of diabetic cardiomyopathy. Heart Fail Rev 19:49–63CrossRefGoogle Scholar
  5. Boldo A, White WB (2011) Blood pressure effects of the oral contraceptive and post menopausal hormone therapies. Endocrinol Metab Clin N Am 40(2):419–432CrossRefGoogle Scholar
  6. Bouchard-Thomassin AA, Lachance D, Drolet MC, Couet J, Arsenault M (2011) A high-fructose diet worsens eccentric left ventricular hypertrophy in experimental in experimental volume overload. Am J Physiol Heart Circ Physiol 300:H125–H134.  https://doi.org/10.1152/ajpheart.00199.2010 CrossRefGoogle Scholar
  7. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115(25):3213–3223CrossRefGoogle Scholar
  8. Bozdag G, Yildiz BO (2013) Combined oral contraceptives in polycystic ovary syndrome indications and cautions. Polycystic ovary syndrome. Novel insights into causes and therapy. Front Horm Res. Basel, Karger 40:115–127Google Scholar
  9. Brady T (1942) Adenosine deaminase. Biochem J 36(5–6):478–484CrossRefGoogle Scholar
  10. Bundalo M, Djordjevic A, Bursac B, Zivkovic M, Koricanac G, Stankovic A (2017) Fructose rich diet differently affects angiotensin II receptors content in the nucleus and a plasma membrane fraction of visceral adipose tissue. Appl Physiol Nutr Metab 42(12):1254–1263CrossRefGoogle Scholar
  11. Bundalo MM, Zivkovic MD, Romic S, Tepavcevic SN, Koricanac GB, Djuric TM, Stankovic AD (2016) Fructose-rich diet induces gender-specific changes in expression of the rennin angiotensin system in rat heart and upregulates the ACE/AT1R axis in the male rat aorta. J Renin Angiotensin Aldosterone Syst 17(2):1470320316642915.  https://doi.org/10.1177/1470320316642915 CrossRefGoogle Scholar
  12. Bundalo M, Zivkovic M, Tepavcevic S, Culafic T, Koricanac G, Stankovic A (2015) Fructose-rich diet-induced changes in the expression of the renin angiotensin system molecules in the heart of ovariectomized female rats could be reversed by estradiol hormone. Metab Res 47:521–527Google Scholar
  13. Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, Shoghi K, Welch MJ, Kelly DP (2007) Nuclear receptors PPAR beta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117:3930–3939Google Scholar
  14. Chambers KT, Leone TC, Sambandam N, Kovacs A, Wagg CS, Lopaschuk GD, Finck BN, Kelly DP (2011) Chronic inhibition of pyruvate dehydrogenase in heart triggers an adaptive metabolic response. J Biol Chem 286(13):11155–11162CrossRefGoogle Scholar
  15. Chaudhary K, Malhotra K, Sowers J, Aroor A (2013) Uric acid—key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med 3:208–220CrossRefGoogle Scholar
  16. Connaughton S, Chowdhury F, Attia RR, Song S, Zhang Y, Elam MB, Cook GA, Park EA (2010) Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin. Mol Cell Endocrinol 315:159–167CrossRefGoogle Scholar
  17. Coort SL, Bonen A, van der Vusse GJ, Glatz JF, Luiken JJ (2007) Cardiac substrate uptake and metabolism in obesity and type-2 diabetes: role of sarcolemmal substrate transporters. Mol Cell Biochem 299:5–18CrossRefGoogle Scholar
  18. Crawford SO, Hoogeveen RC, Brancati FL, Astor BC, Ballantyne CM (2010) Association of blood lactate with type 2 diabetes: the Atherosclerosis Risk in Communities Carotid MRI Study. Int J Epidemiol 39:1647–1655CrossRefGoogle Scholar
  19. de Melo AS, Reis RM, Ferriani RA, Vieira CS (2015) Hormonal contraception in women with polycystic ovary syndrome: choices, challenges, and non-contraceptive benefits. OAJC 8:13–23CrossRefGoogle Scholar
  20. Delbosc S, Paizanis E, Magous R, Araiz C, Dimo T, Cristol JP, Cros G, Azay J (2005) Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis 179(1):43–49CrossRefGoogle Scholar
  21. Delbridge LMD, Benson VL, Ritchie RH, Mellor KM (2016) Diabetic cardiomyopathy: the case for a role of fructose in disease etiology. Diabetes 65:3521–3528CrossRefGoogle Scholar
  22. Drosatos K, Schulze PC (2013) Cardiac lipotoxicity: pathway and therapeutic implication. Curr Heart Fail Rep 10920:109–121CrossRefGoogle Scholar
  23. Dutka DP, Pitt M, Pagano D, Mongillo M, Gathercole D, Bonser RS, Camici PG (2006) Myocardial glucose transport and utilization in patients with type 2 diabetes mellitus, left ventricular dysfunction, and coronary arterydisease. J Am Coll Cardiol 48(11):2225–2231CrossRefGoogle Scholar
  24. Grieve DJ, Shah AM (2003) Oxidative stress in heart failure. More than just damage. Eur Heart J 24:2161–2163CrossRefGoogle Scholar
  25. Huang JP, Cheng ML, Wang CH, Shiao MS, Chen JK, Hung LM et al (2016) High-fructose and high-fat feeding correspondingly lead to the development of lysoPC-associated apoptotic cardiomyopathy and adrenergic signaling-related cardiac hypertrophy. Int J Cardiol 215:65–76CrossRefGoogle Scholar
  26. Iossa S, Mollica MP, Lionetti L, Crescenzo R, Tasso R (2004) A possible link between skeletal muscle mitochondrial efficiency and age-induced insulin resistance. Diabetes 53:2861–2866CrossRefGoogle Scholar
  27. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038CrossRefGoogle Scholar
  28. Kelley EE, Khoo NKH, Hundley NJ, Malik UZ, Freeman BA, Tarpey MM (2010) Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med 48(4):493–498CrossRefGoogle Scholar
  29. Kim CS, Kim SK, Aranetab MRG, Leed EJ, Barrett-Connor E, Huh KB (2015) Can increased visceral adiposity without body weight changes accelerate carotid atherosclerosis in South Korean participants with type 2 diabetes? J Diabetes Complicat 15:S1056–S8727Google Scholar
  30. Kim YI, Lee FN, Choi WS, Lee S, Youn JH (2006) Insulin regulation of skeletal muscle PDK4 mRNA expression is impaired in acute insulin-resistant states. Diabetes 55:2311–2317CrossRefGoogle Scholar
  31. Ko BS, Kim DS, Kang S, Ryuk JA, Park S (2013) Prunus mume and Lithospermum erythrorhizon extracts synergistically prevent visceral adiposity by improving energy metabolism through potentiating hypothalamic leptin and insulin signalling in ovariectomized rats. Evid Based Complement Alternat MedGoogle Scholar
  32. Kodde IF, van der Stok J, Smolenski RT, de Jong JW (2007) Metabolic and genetic regulation of cardiac energy substrate preference. Comp Biochem Physiol Mol Integr Physiol 146:26–39CrossRefGoogle Scholar
  33. Kokubun E, Hirabara SM, Fiamoncini J, Curi R, Haebisch H (2009) Changes of glycogen content in liver, skeletal muscle, and heart from fasted rats. Cell Biochem Funct 27:488–495CrossRefGoogle Scholar
  34. Kolovou GD, Anagnostopoulou KK, Cokkinos DV (2005) Pathophysiology of dyslipidaemia in the metabolic syndrome. Postgrad Med J 81:358–366CrossRefGoogle Scholar
  35. Korićanac G, Tepavčević S, Romić S, Živković M, Stojiljković M, Milosavljević T, Stanković A, Petković M, Kamčeva T, Žakula Z (2012) Estradiol enhances effects of fructose rich diet on cardiac fatty acid transporte rCD36 and triglycerides accumulation. Eur J Pharmacol 694:127–134CrossRefGoogle Scholar
  36. Kranstuber AL, Del Rio C, Biesiadecki BJ, Hamlin Ottobre RL, Gyorke S, Lacombe VA (2012) Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Front Physiol 3:292CrossRefGoogle Scholar
  37. Labbe SM, Grenier-Larouche T, Noll C, Phoenix S, Guerin B, Turcotte EE, Carpentier AC (2012) Increased myocardial uptake of dietary fatty acids linked to cardiac dysfunction in glucose-intolerant humans. Diabetes 61(11):2701–2710CrossRefGoogle Scholar
  38. Maguire K, Westhoff C (2011) The state of hormonal contraception today: established and emerging non-contraceptive health benefits. Am J Obstet Gynecol 205:4–8CrossRefGoogle Scholar
  39. Mandal AS, Mercado A, Foster A, Zandi-Nejad K, Mount DB (2017) Uricosuric targets of trannilast. Pharmacol Res Perspect 5(2):e00291.  https://doi.org/10.1002/prp2.291 CrossRefGoogle Scholar
  40. Maulik SK, Kumar S (2012) Oxidative stress and cardiac hypertrophy: a review. Toxicol Mech Methods 2:359–366CrossRefGoogle Scholar
  41. McGill JB, Peterson LR, Herrero P, Saeed IM, Recklein C, Coggan AR et al (2011) Potentiation of abnormalities inmyocardial metabolism with the development of diabetes in womenwith obesity and insulin resistance. J Nucl Cardiol 18(3):421–429CrossRefGoogle Scholar
  42. Mellor KM, Ritchie RH, Davidoff AJ, Delbridge LM (2010a) Elevated dietary sugar and the heart: experimental models and myocardial remodeling. Can J Physiol Pharmacol 88:525–540CrossRefGoogle Scholar
  43. Mellor KM, Ritchie RH, Delbridge LM (2010b) Reactive oxygen species and insulinresistant cardiomyopathy. Clin Exp Pharmacol Physiol 37:222–228CrossRefGoogle Scholar
  44. Michael OS, Olatunji LA (2017) Ameliorative effect of nicotine exposure on insulin resistance is accompanied by decreased cardiac glycogen synthase kinase-3 and plasminogenactivator inhibitor-1 during oral oestrogen-progestin therapy. Arch Physiol Biochem 124(2):139–148CrossRefGoogle Scholar
  45. Mori J, Alrob OA, Wagg CS, Harris RA, Lopaschuk GD, Oudit GY (2013) ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am J Physiol Heart Circ Physiol 304:H1103–H1113CrossRefGoogle Scholar
  46. Mytilineous C, Kramer BC, Yabut JA (2002) Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 8(6):385–387CrossRefGoogle Scholar
  47. Olatunji LA, Michael OS, Adeyanju AO, Areola ED, Soladoye AO (2016) Anti-inflammatory and antithrombotic effects of nicotine exposure in oral contraceptive-induced insulin resistance is glucocorticoid-independent. Pharmacol Rep 140(16):30458–30453Google Scholar
  48. Olatunji LA, Olaniyi KS, Usmana TO, Abolarinwa BA, Achile CJ, Kim IK (2017) Combined oral contraceptive and nitric oxide synthesis inhibition synergistically causes cardiac hypertrophy and exacerbates insulin resistance in female rats. Environ Toxicol Pharmacol 52:54–61CrossRefGoogle Scholar
  49. Orchard TJ, Temprosa M, Goldberg R, Haffner S, Ratner R, Marcovina S et al (2005) The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: the diabetes prevention program randomized trial. Ann Intern Med 142:611–619CrossRefGoogle Scholar
  50. Palomer X, Salvadó L, Barroso E, Vázquez-Carrera M (2013) An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Int J Cardiol 168(4):3160–3172CrossRefGoogle Scholar
  51. Paravicini TM, Touyz RM (2008) NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 31(Suppl 2):S170–S180.  https://doi.org/10.2337/dc08-s247 CrossRefGoogle Scholar
  52. Paulson DJ, Crass MF 3rd (1982) Endogenous triacylglycerol metabolism in diabetic heart. Am J Physiol 242:H1084–H1094Google Scholar
  53. Perret P, Slimani L, Briat A (2007) Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-D-glucose, a new tracer of glucose transport. Eur J Nucl Med Mol Imaging 34:734–744CrossRefGoogle Scholar
  54. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142CrossRefGoogle Scholar
  55. Petrii VV, Mikova NV, Makolkin VI (2007) Correction of episodes of transitory myocardial ischemia with trimetazidine in patients with ischemic heart disease combined with type 2 diabetes mellitus. Kardiologiia 47:22–25Google Scholar
  56. Rabinovic R, Kabir K, Chen M, Su Y, Zhang D, Luo X (2001) ADA1 is involved in the development of microvascular lung injury. Circ Res 88:1066–1071CrossRefGoogle Scholar
  57. Rajeshwari T, Raja B, Manivannan J, Silambarasan T (2014) Valproic acid attenuates blood pressure, vascular remodeling and modulates ET-1 expression in L-NAME induced hypertensive rats. J Biomed Prev Nutr 4:195–202CrossRefGoogle Scholar
  58. Reichelt ME, Mellor KM, Cur CL, Stapleton D, Delbridge LMD (2013) Myocardial glycophagy—a specific glycogen handling response to metabolic stress is accentuated in the female heart. J Mol Cell Cardiol 65:67–75CrossRefGoogle Scholar
  59. Rijzewijk LJ, van der Meer RW, Lamb HJ, De Jong HW, Lubberink M, Romijn JA et al (2009) Altered myocardial substrate metabolism and decreased diastolic function in nonischemichuman diabetic cardiomyopathy: studies with cardiac positron emissiontomography and magnetic resonance imaging. J Am Coll Cardiol 54(16):1524–1532CrossRefGoogle Scholar
  60. Rodrigues LFDS, Oliveira MEF, Teixeira PPM, Cavalcante IJM, Vale MR (2012) Adenosine deaminase activity as a biomarker of inflammatory response in goats infected by caprine arthritis-encephalitis virus. Small Rumin Res 108(1–3):120–112CrossRefGoogle Scholar
  61. Schiavone S, Camerino GM, Mhillaj E, Zotti M, Colaianna M, De Giorgi A, Trotta A, Cantatore FP, Conte E, Bove M, Tucci P, Morgese MG, Trabace L (2017) Visceral fat dysfunctions in the rat social isolation model of psychosis. Front Pharmacol 8:787.  https://doi.org/10.3389/fphar.00787 CrossRefGoogle Scholar
  62. Simha V, Szczepaniak LS, Wagner AJ, DePaoli AM, Garg A (2003) Effect of leptin replacement on intrahepatic and intramyocellular lipid content in patients with generalized lipodystrophy. Diabetes Care 26:30e35CrossRefGoogle Scholar
  63. Sowers JR (2004) Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol 286(5):H1597–H1602CrossRefGoogle Scholar
  64. Springer J, Tschirner A, Hartman K, von Haehling S, Anker SD, Doehner W (2013) The xanthine oxidase inhibitor oxypurinol reduces cancer cachexiainduced cardiomyopathy. Int J Cardiol 168:3527–3531CrossRefGoogle Scholar
  65. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, Hatcher B, Cox CL, Dyachenko A, Zhang W, McGahan JP, Seibert A, Krauss RM, Chiu S, Schaefer EJ, Ai M, Otokozawa S, Nakajima K, Nakano T, Beysen C, Hellerstein MK, Berglund L, Havel PJ (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119:1322–1334CrossRefGoogle Scholar
  66. Taegtmeyer H, McNulty P, Young ME (2002) Adaptation and maladaptation of the heart in diabetes. Circulation 105:1727–1733CrossRefGoogle Scholar
  67. Tran LT, Yuen VG, McNeill JH (2009) The fructose-fed rat: a review on the 619 mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem 332:145–159CrossRefGoogle Scholar
  68. Woerle HJ, Szoke E, Meyer C, Dostou JM, Wittlin SD (2006) Mechanisms for abnormal postprandial glucose metabolism in type 2 diabetes. Am J Physiol Endocrinol Metab 290:E67–E77CrossRefGoogle Scholar
  69. Wu K, Hung CY, Chan J, Wu C (2014) An increase in adenosine-5′-triphosphate (ATP) content in rostral ventrolateral medulla is engaged in the highfructose diet-induced hypertension. J Biomed Sci 21:8CrossRefGoogle Scholar
  70. Wu Y, Zhang A, Hamilton DJ, Deng T (2017) Epicardial fat in the maintenance of cardiovascular health. Methodist Debakey Cardiovasc J 1:20–24CrossRefGoogle Scholar
  71. Xu KY, Zweier JL, Becker LC (1995) Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+ transport. Circ Res 77(1):88–97CrossRefGoogle Scholar
  72. Yang J, Sambandam N, Han X, Gross RW, Courtois M, Kovacs A et al (2007) CD 36 deficiency rescues lipotoxic cardiomyopathy. Circ Res 100:1208–1217CrossRefGoogle Scholar
  73. Yeaman SJ, Hutcheson ET, Roche TE, Pettit FH, Brown JR, Reed LJ, Watson DC, Dixon GH (1978) The mammalian 2-oxoacid dehydrogenases: a complex family. Biochemistry 17:2364–2370CrossRefGoogle Scholar
  74. Zhang Y, Ma K, Sadana P, Chowdhury F, Gaillard S, Wang F, McDonnell DP, Terry G, Unterman TG, Elam MB, Park EA (2006) Estrogen-related receptors stimulate PDK isoform 4 gene expression. J Biol Chem 281(52):39897–39906CrossRefGoogle Scholar
  75. Zhang J, Zhang BH, Yu YR, Tang CS, Qi YF (2011) Adrenomedullin protects against fructose-induced insulin resistance and myocardial hypertrophy in rats. Peptides 32:1415–1421CrossRefGoogle Scholar
  76. Zharikov S, Krotova K, Hu H, Baylis C, Johnson RJ, Block ER, Patel J (2008) Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am J Phys Cell Physiol 295:C1183–C1190CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kehinde Samuel Olaniyi
    • 1
  • Lawrence Aderemi Olatunji
    • 1
    Email author
  1. 1.HOPE Cardiometabolic Research Team & Department of Physiology, College of Health SciencesUniversity of IlorinIlorinNigeria

Personalised recommendations