Skip to main content

Advertisement

Log in

Effects of Cd2+ on transient outward and delayed rectifier potassium currents in acutely isolated rat hippocampal CA1 neurons

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The effects of cadmium (Cd2+) on the transient outward potassium current (I A) and delayed rectifier potassium current (I K) were investigated in acutely dissociated rat hippocampal CA1 neurons using the whole-cell patch-clamp technique. The results showed that Cd2+ inhibited the amplitudes of I A and I K in a reversible and concentration-dependent manner, with half-maximal inhibitive concentration (IC50) values of 546 ± 59 and 749 ± 53 μM, and the inhibitory effect of Cd2+ was voltage dependent. Cd2+ significantly shifted the steady-state activation and inactivation curve of I A to more positive potentials. In contrast, Cd2+ caused a relatively less but still significant positive shift in the activation of I K without effect on the inactivation curve. Cd2+ significantly slowed the recovery from inactivation of I K but had no effect on the recovery time course of I A. The results suggest that the modulation of I A and I K was most likely mediated by the interaction of Cd2+ with a specific site on the potassium-channel protein rather than by screening of bulk surface-negative charge. The effects of Cd2+ on the voltage-gated potassium currents may be a possible contributing mechanism for the Cd2+-induced neurotoxic damage. In addition, the effects of Cd2+ on the potassium currents at concentrations that overlap with its effects on calcium currents raise concerns about its use in pharmacological or physiological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Babitch JA (1988) In: Bondy SC, Prasad KN (eds) Cadmium neurotoxicity. Metal neurotoxicity. CRC Press, Boca Raton

    Google Scholar 

  • Chow RH (1991) Cadmium block of squid calcium currents. Macroscopic data and a kinetic model. J Gen Physiol 98:751–770

    Article  PubMed  CAS  Google Scholar 

  • Connor JA, Stevens CF (1971) Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol 213:31–53

    PubMed  CAS  Google Scholar 

  • Cooper GP, Manalis RS (1984a) Cadmium: effects on transmitter release at the frog neuromuscular junction. Eur J Pharmacol 99:251–256

    Article  PubMed  CAS  Google Scholar 

  • Cooper GP, Manalis RS (1984b) Interactions of lead and cadmium on acetylcholine release at the frog neuromuscular junction. Toxicol Appl Pharmacol 74:411–416

    Article  PubMed  CAS  Google Scholar 

  • De Castro ESE, Ferreira H, Cunha M, Bulcao C, Sarmento C, De Oliveira I, Fregoneze JB (1996) Effect of central acute administration of cadmium on drinking behavior. Pharmacol Biochem Behav 53:687–693

    Article  Google Scholar 

  • Duan S, Cooke IM (1999) Selective inhibition of transient K+ current by La3+ in crab peptide-secretory neurons. J Neurophysiol 81:1848–1855

    PubMed  CAS  Google Scholar 

  • Ficker E, Heinemann U (1992) Slow and fast transient potassium currents in cultured rat hippocampal cells. J Physiol 445:431–455

    PubMed  CAS  Google Scholar 

  • Follmer CH, Lodge NJ, Cullinan CA, Colatsky TJ (1992) Modulation of the delayed rectifier, IK, by cadmium in cat ventricular myocytes. Am J Physiol 262:C75–C83

    PubMed  CAS  Google Scholar 

  • Frankenhaeuser B, Hodgkin AL (1957) The action of calcium on the electrical properties of squid axons. J Physiol 137:218–244

    PubMed  CAS  Google Scholar 

  • Gilly WF, Armstrong CM (1982a) Divalent cations and the activation kinetics of potassium channels in squid giant axons. J Gen Physiol 79:965–996

    Article  PubMed  CAS  Google Scholar 

  • Gilly WF, Armstrong CM (1982b) Slowing of sodium channel opening kinetics in squid axon by extracellular zinc. J Gen Physiol 79:935–964

    Article  PubMed  CAS  Google Scholar 

  • Guan YY, Quastel DM, Saint DA (1987) Multiple actions of cadmium on transmitter release at the mouse neuromuscular junction. Can J Physiol Pharmacol 65:2131–2136

    PubMed  CAS  Google Scholar 

  • Hahin R, Campbell DT (1983) Simple shifts in the voltage dependence of sodium channel gating caused by divalent cations. J Gen Physiol 82:785–805

    Article  PubMed  CAS  Google Scholar 

  • Hastings L, Choudhury H, Petering HG, Cooper GP (1978) Behavioral and biochemical effects of low-level prenatal cadmium exposure in rats. Bull Environ Contam Toxicol 20:96–101

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes, 2nd edn. Sinauer Assoc. Inc, Sunderland

    Google Scholar 

  • Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Yang D, Lin Z, Wu C, Zhou P, Dai D (1998) Blockade of bepridil on IA and IK in acutely isolated hippocampal CA1 neurons. Brain Res 809:149–154

    Article  PubMed  CAS  Google Scholar 

  • Kaneda M, Nakamura H, Akaike N (1988) Mechanical and enzymatic isolation of mammalian CNS neurons. Neurosci Res 5:299–315

    Article  PubMed  CAS  Google Scholar 

  • Kay AR, Miles R, Wong RK (1986) Intracellular fluoride alters the kinetic properties of calcium currents facilitating the investigation of synaptic events in hippocampal neurons. J Neurosci 6:2915–2920

    PubMed  CAS  Google Scholar 

  • Kostyuk PG, Krishtal OA, Pidoplichko VI (1975) Effect of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells. Nature 257:691–693

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk PG, Veselovsky NS, Fedulova SA, Tsyndrenko AY (1981) Ionic currents in the somatic membrane of rat dorsal root ganglion neurons-III. Potassium currents. Neuroscience 6:2439–2444

    Article  PubMed  CAS  Google Scholar 

  • Latorre R, Labarca P, Naranjo D (1992) Surface charge effects on ion conduction in ion channels. Methods Enzymol 207:471–501

    PubMed  CAS  Google Scholar 

  • Lehman LD, Klaassen CD (1986) Dosage-dependent disposition of cadmium administered orally to rats. Toxicol Appl Pharmacol 84:159–167

    Article  PubMed  CAS  Google Scholar 

  • Marlowe M, Errera J, Jacobs J (1983) Increased lead and cadmium burdens among mentally retarded children and children with borderline intelligence. Am J Ment Defic 87:477–483

    PubMed  CAS  Google Scholar 

  • Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J Neurosci 18:8111–8125

    PubMed  CAS  Google Scholar 

  • McCarthy DC, Noelle RJ, Gallagher JD, McCann FV (1993) Effects of cadmium on potassium currents in activated B lymphocytes. Cell Signal 5:417–424

    Article  PubMed  CAS  Google Scholar 

  • Molnar G, Gyori J, Salanki J, Rozsa KS (2002) Cadmium ions modulate GABA induced currents in molluscan neurons. Acta Biol Hung 53:105–123

    Article  PubMed  CAS  Google Scholar 

  • Muller W, Bittner K (2002) Differential oxidative modulation of voltage-dependent K+ currents in rat hippocampal neurons. J Neurophysiol 87:2990–2995

    PubMed  Google Scholar 

  • Muller W, Misgeld U (1990) Inhibitory role of dentate hilus neurons in guinea pig hippocampal slice. J Neurophysiol 64:46–56

    PubMed  CAS  Google Scholar 

  • Muller W, Misgeld U (1991) Picrotoxin-and 4-aminopyridine-induced activity in hilar neurons in the guinea pig hippocampal slice. J Neurophysiol 65:141–147

    PubMed  CAS  Google Scholar 

  • Murphy VA (1997) In: Yasui M, Strong MJ, Ota K et al (eds) Cadmium: acute and chronic neurological disorders. Mineral and metal: neurotoxicology. CRC Press, Boca Raton

    Google Scholar 

  • Nordberg M (1984) General aspects of cadmium: transport, uptake and metabolism by the kidney. Environ Health Perspect 54:13–20

    Article  PubMed  CAS  Google Scholar 

  • Numann RE, Wadman WJ, Wong RK (1987) Outward currents of single hippocampal cells obtained from the adult guinea-pig. J Physiol 393:331–353

    PubMed  CAS  Google Scholar 

  • Schlichter L, Sidell N, Hagiwara S (1986) Potassium channels mediate killing by human natural killer cells. Proc Natl Acad Sci USA 83:451–455

    Article  PubMed  CAS  Google Scholar 

  • Segal M, Barker JL (1984) Rat hippocampal neurons in culture: potassium conductances. J Neurophysiol 51:1409–1433

    PubMed  CAS  Google Scholar 

  • Stellern J, Marlowe M, Cossairt A, Errera J (1983) Low lead and cadmium levels and childhood visual-perception development. Percept Mot Skills 56:539–544

    PubMed  CAS  Google Scholar 

  • Swandulla D, Armstrong CM (1989) Calcium channel block by cadmium in chicken sensory neurons. Proc Natl Acad Sci USA 86:1736–1740

    Article  PubMed  CAS  Google Scholar 

  • Thatcher RW, Lester ML, McAlaster R, Horst R (1982) Effects of low levels of cadmium and lead on cognitive functioning in children. Arch Environ Health 37:159–166

    PubMed  CAS  Google Scholar 

  • Usai C, Barberis A, Moccagatta L, Marchetti C (1999) Pathways of cadmium influx in mammalian neurons. J Neurochem 72:2154–2161

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Zhao G, Cheng L, Zhou HY, Fu LY, Yao WX (2004) Effects of berberine on potassium currents in acutely isolated CA1 pyramidal neurons of rat hippocampus. Brain Res 999:91–97

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Gu Y, Wang HL, Li XM, Wang M, Sun LG, Ruan DY (2006) Inhibitory effect of Cd2+ on glycine-induced chloride current in rat hippocampal neurons. Brain Res Bull 69:680–686

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Hu P, Wang H-L, Wang M, Chen J-T, Ruan D-Y, Tang J-L (2007) Effects of Cd2+ on AMPA receptor-mediated synaptic transmission in rat hippocampal CA1 area. Toxicol Lett DOI 10.1016/j.toxlet.2007.11.008

  • Webster WS, Valois AA (1981) The toxic effects of cadmium on the neonatal mouse CNS. J Neuropathol Exp Neurol 40:247–257

    Article  PubMed  CAS  Google Scholar 

  • Xu TX, Gong N, Xu TL (2005) Divalent cation modulation of a-type potassium channels in acutely dissociated central neurons from wide-type and mutant Drosophila. J Neurogenet 19:87–107

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Fukuta H, Suzuki H (1993) Blockade of sodium channels by divalent cations in rat gastric smooth muscle. Jpn J Physiol 43:785–796

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Nie A, Bai W, Meng Z (2004) Effects of aluminum chloride on sodium current, transient outward potassium current and delayed rectifier potassium current in acutely isolated rat hippocampal CA1 neurons. Food Chem Toxicol 42:1453–1462

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2002CB512907), the National Nature Science Foundation of China (No. 30630057; 30670554; 30670662; 30672290), Academia Sinica (No. KZCX3-SW-437), China Postdoctoral Science Foundation (No. 20060400719) and K.C. Wong Education Foundation of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di-Yun Ruan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Xing, TR., Tang, ML. et al. Effects of Cd2+ on transient outward and delayed rectifier potassium currents in acutely isolated rat hippocampal CA1 neurons. Naunyn-Schmied Arch Pharmacol 377, 245–253 (2008). https://doi.org/10.1007/s00210-008-0278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0278-7

Keywords

Navigation