Rankin–Selberg L-functions and “beyond endoscopy”

  • Satadal Ganguly
  • Ramdin MawiaEmail author


Let f and g be two holomorphic cuspidal Hecke eigenforms on the full modular group \( \text {SL}_{2}({\mathbb {Z}}). \) We show that the Rankin–Selberg L-function \(L(s, f \times g)\) has no pole at \(s=1\) unless \( f=g \), in which case it has a pole with residue \( \frac{3}{\pi }\frac{(4\pi )^{k}}{\Gamma (k)} \Vert f \Vert ^2 \), where \( \Vert f\Vert \) is the Petersson norm of f. Our proof uses the Petersson trace formula and avoids the Rankin–Selberg method.

Mathematics Subject Classification

11F12 11F30 11F66 



The authors thank Farrell Brumley, Subhajit Jana, M. Ram Murty, V. Kumar Murty, Dipendra Prasad, Olivier Ramar and Peter Sarnak for their interest in this paper and their valuable comments. We especially thank the anonymous referee for helpful remarks which have improved the scope of the result in this paper.


  1. 1.
    Ali Altuǧ, S.: Beyond endoscopy via the trace formula: 1. Poisson summation and isolation of special representations. Compos. Math. 151(10), 1791–1820 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ali Altuǧ, S.: Beyond endoscopy via the trace formula, II: Asymptotic expansions of Fourier transforms and bounds towards the Ramanujan conjecture. Am. J. Math. 139, 4 (2017)MathSciNetGoogle Scholar
  3. 3.
    Duke, W., Iwaniec, H.: Convolution \(L\)-series. Compos. Math. 91, 145–158 (1994)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Edward Herman, P.: Beyond endoscopy for the Rankin–Selberg L-function. J. Number Theory 131(9), 1691–1722 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Edward Herman, P.: Quadratic base change and the analytic continuation of the Asai L-function: a new trace formula approach. Am. J. Math. 138(6), 1669–1729 (2016). (English summary) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Iwaniec, H.: Topics in classical automorphic forms. American Mathematical Society Graduate Studies in Mathematics 17, Providence, RI, 1997. xii+259 ppGoogle Scholar
  7. 7.
    Iwaniec, H.: Spectral methods of automorphic forms. Second Edition. Graduate Studies in Mathematics, 53. American Mathematical Society, Providence; Revista Matemtica Iberoamericana, Madrid, 2002. xii+220 ppzbMATHGoogle Scholar
  8. 8.
    Iwaniec, H., Kowalski, E.: Analytic number theory. American Mathematical Society Colloquium Publications 53, American Mathematical Society, Providence (2004)Google Scholar
  9. 9.
    Iwaniec, H., Michel, P.: The second moment of the symmetric square L-functions. Ann. Acad. Sci. Fenn. Math. 26, 465–482 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Kloosterman, H.D.: On the representation of numbers in the form \(ax^2+by^2+cz^2+dt^2\). Acta Math. 49(3–4), 407–464 (1927)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Endoscopy, Beyond: In contributions to automorphic forms, geometry, and number theory, pp. 611–697. Johns Hopkins University Press, Baltimore (2004)Google Scholar
  12. 12.
    Sarnak, P.: Comments on Robert Langlands Lecture: Endoscopy and Beyond,
  13. 13.
    Venkatesh, A.: “Beyond endoscopy” and special forms on GL(2). J. Reine Angew. Math. 577, 23–80 (2004)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Watson, G.N.: A treatise on the theory of Bessel functions. Reprint of the second (1944) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1995)Google Scholar
  15. 15.
    White, P.J.: The base change \(L\)-function for modular forms and beyond endoscopy. J. Number Theory 140, 13–37 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Theoretical Statistics and Mathematics UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations