Advertisement

Brauer’s height zero conjecture for two primes

  • Gunter Malle
  • Gabriel NavarroEmail author
Article
  • 26 Downloads

Abstract

Let p and q be two primes. We propose that Brauer’s Height Zero Conjecture for the principal p-blocks of finite groups can naturally be extended from the perspective of q. We prove one direction of this new conjecture, and show the reverse direction assuming that the Inductive Alperin–McKay condition holds for the finite simple groups.

Keyword

Brauer’s Height Zero Conjecture 

Mathematics Subject Classification

Primary 20C15 

Notes

References

  1. 1.
    Alperin, J.L.: Isomorphic blocks. J. Algebra 48, 694–698 (1976)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Beltrán, A., Felipe, M.J., Malle, G., Moretó, A., Navarro, G., Sanus, L., Solomon, R., Tiep, P.H.: Nilpotent and Abelian Hall subgroups in finite groups. Trans. Am. Math. Soc. 368, 2497–2513 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bessenrodt, C., Navarro, G., Olsson, J.B., Tiep, P.H.: On the Navarro-Willems conjecture for blocks of finite groups. J. Pure Appl. Algebra 208, 481–484 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cabanes, M., Enguehard, M.: On unipotent blocks and their ordinary characters. Invent. Math. 117, 149–164 (1994)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Carter, R.: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. Wiley, Chichester (1985)zbMATHGoogle Scholar
  6. 6.
    Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, Eynsham (1985)zbMATHGoogle Scholar
  7. 7.
    Enguehard, M.: Sur les \(l\)-blocs unipotents des groupes réductifs finis quand \(l\) est mauvais. J. Algebra 230, 334–377 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Giannelli, E., Malle, G., Vallejo, C.: Even degree characters in principal blocks. J. Pure Appl. Algebra 223, 900–907 (2019)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gorenstein, D., Lyons, R., Solomon, R.: The Classification of the Finite Simple Groups. Number 3. Mathematical Surveys and Monographs, vol. 40.3. American Mathematical Society, Providence, RI (1998)Google Scholar
  10. 10.
    Isaacs, I.M.: Finite Group Theory. Graduate Studies in Mathematics, 92. American Mathematical Society, Providence, RI (2008)Google Scholar
  11. 11.
    Isaacs, I.M., Scott, L.: Blocks and subgroups. J. Algebra 20, 630–636 (1972)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kessar, R., Malle, G.: Quasi-isolated blocks and Brauer’s height zero conjecture. Ann. Math. (2) 178, 321–384 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kessar, R., Malle, G.: Brauer’s height zero conjecture for quasi-simple groups. J. Algebra 475, 43–60 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Malle, G.: Height 0 characters of finite groups of Lie type. Represent. Theory 11, 192–220 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Navarro, G.: Characters and Blocks of Finite Groups. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  16. 16.
    Navarro, G.: Character Theory and the McKay Conjecture. Cambridge University Press, Cambridge (2018)CrossRefGoogle Scholar
  17. 17.
    Navarro, G., Späth, B.: On Brauer’s Height Zero Conjecture. J. Eur. Math. Soc. 16, 695–747 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Navarro, G., Tiep, P.H.: Brauer’s height zero conjecture for the 2-blocks of maximal defect. J. Reine Angew. Math. 669, 225–247 (2012)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Navarro, G., Wolf, T.R.: Character degrees and blocks of finite groups. J. Reine Angew. Math. 531, 141–146 (2001)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Späth, B.: A reduction theorem for the Alperin-McKay conjecture. J. Reine Angew. Math. 680, 153–189 (2013)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.FB MathematikTU KaiserslauternKaiserslauternGermany
  2. 2.Departament of MathematicsUniversitat de ValènciaBurjassotSpain

Personalised recommendations