Advertisement

Weighted Lebesgue and \(BMO^\gamma \) norm inequalities for the Calderón and Hilbert operators

  • Elida V. Ferreyra
  • Guillermo J. FloresEmail author
  • Beatriz E. Viviani
Article
  • 18 Downloads

Abstract

Necessary and sufficient conditions are given for generalized Calderón and Hilbert operators to be bounded from weighted Lebesgue spaces into suitable weighted BMO and Lipschitz spaces. Moreover, we have obtained new results on the boundedness of these operators from \(L^{\infty }\) into BMO, even in the unweighted case for the Hilbert operator. The class of weights involved are close to the doubling and reverse Hölder conditions related to the Muckenhoupt’s classes.

Keywords

Calderón operator BMO spaces Weighted inequalities Integral operators 

Mathematics Subject Classification

30H35 42B25 42B35 

Notes

References

  1. 1.
    Bastero, J., Milman, M., Ruiz, F.J.: On the connection between weighted norm inequalities, commutators and real interpolation. Mem. Am. Math. Soc. 154(731), viii+80 (2001)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Dieudonné, J.: Treatise on analysis, vol. VIII. In: Pure and Applied Mathematics, 10-VIII. Translated from the French by Laura Fainsilber. Academic Press, Inc., Boston (1993). ISBN: 0-12-215508-4 00A05Google Scholar
  3. 3.
    Drábek, P., Heinig, H.P., Kufner, A.: Higher-dimensional Hardy inequality. In: Bandle, C., Everitt, W.N., Losonczi, L., Walter, W. (eds.) General Inequalities 7. International Series of Numerical Mathematics, vol. 123, pp. 3–16. Birkhäuser, Basel (1997).  https://doi.org/10.1007/978-3-0348-8942-1_1
  4. 4.
    Duoandikoetxea, J.: Fractional integrals on radial functions with applications to weighted inequalities. Ann. Mat. Pura Appl. (4) 192(4), 553–568 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Duoandikoetxea, J., Martín-Reyes, F.J., Ombrosi, S.: Calderón weights as Muckenhoupt weights. Indiana Univ. Math. J. 62(3), 891–910 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fefferman, C., Muckenhoupt, B.: Two nonequivalent conditions for weight functions. Proc. Am. Math. Soc. 45, 99–104 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ferreyra, E., Flores, G.: Weighted estimates for integral operators on local BMO type spaces. Math. Nachr. 288(8–9), 905–916 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Harboure, E., Chicco Ruiz, A.: BMO spaces related to Laguerre semigroups. Math. Nachr. 287(2–3), 254–280 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Harboure, E., Salinas, O., Viviani, B.: Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces. Trans. Am. Math. Soc. 349(1), 235–255 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Harboure, E., Segovia, C., Torrea, J.L., Viviani, B.: Power weighted \(L^p\)-inequalities for Laguerre–Riesz transforms. Ark. Mat. 46(2), 285–313 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hardy, G.H., Littlewood, J.E.: Notes on the theory of series (VI): Two inequalities. J. Lond. Math. Soc. 2(3), 196–201 (1927)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1988). Reprint of the 1952 editionzbMATHGoogle Scholar
  13. 13.
    Muckenhoupt, B.: Hardy’s inequality with weights. Stud. Math. 44, 31–38 (1972). Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, IMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 192, 261–274 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Muckenhoupt, B., Wheeden, R.L.: Weighted bounded mean oscillation and the Hilbert transform. Stud. Math. 54(3), 221–237 (1975/1976)Google Scholar
  16. 16.
    Nowak, A., Stempak, K.: Weighted estimates for the Hankel transform transplantation operator. Tohoku Math. J. (2) 58(2), 277–301 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Weyl, H.: Singuläre Integralgleichungen. Math. Ann. 66(3), 273–324 (1908)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Elida V. Ferreyra
    • 1
  • Guillermo J. Flores
    • 1
    Email author
  • Beatriz E. Viviani
    • 2
  1. 1.CIEM-FaMAFUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.IMAL and FIQUniversidad Nacional del LitoralSanta FeArgentina

Personalised recommendations