Advertisement

Completely bounded maps and invariant subspaces

  • M. Alaghmandan
  • I. G. TodorovEmail author
  • L. Turowska
Article

Abstract

We provide a description of certain invariance properties of completely bounded bimodule maps in terms of their symbols. If \(\mathbb {G}\) is a locally compact quantum group, we characterise the completely bounded \(L^{\infty }(\mathbb {G})'\)-bimodule maps that send \(C_0({\hat{\mathbb {G}}})\) into \(L^{\infty }({\hat{\mathbb {G}}})\) in terms of the properties of the corresponding elements of the normal Haagerup tensor product \(L^{\infty }(\mathbb {G}) \otimes _{\sigma \mathop {\mathrm{h}}} L^{\infty }(\mathbb {G})\). As a consequence, we obtain an intrinsic characterisation of the normal completely bounded \(L^{\infty }(\mathbb {G})'\)-bimodule maps that leave \(L^{\infty }({\hat{\mathbb {G}}})\) invariant, extending and unifying results, formulated in the current literature separately for the commutative and the co-commutative cases.

Mathematics Subject Classification

Primary: 46L89 Secondary: 22D15 47L25 

Notes

Acknowledgements

We are grateful to Jason Crann for a number of fruitful conversations on the topic of this paper.

References

  1. 1.
    Alaghmandan, M., Todorov, I.G., Turowska, L.: Completely bounded bimodule maps and spectral synthesis. Int. J. Math. 28(10), 1750067 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arveson, W.B.: Operator algebras and invariant subspaces. Ann. Math. 100, 433–532 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blecher, D.P., Le Merdy, C.: Operator Algebras and their Modules—An Operator Space Approach. Oxford University Press, Oxford (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Blecher, D., Smith, R.R.: The dual of the Haagerup tensor product. J. Lond. Math. Soc. 45, 126–144 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bożejko, M., Fendler, G.: Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group. Boll. Un. Mat. Ital. A 2(2), 297–302 (1984)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Brown, N.P., Ozawa, N.: C*-Algebras and Finite Dimensional Approximations. American Mathematical Society, Providence (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    de Canniere, J., Haagerup, U.: Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups. Am. J. Math. 107(2), 455–500 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Daws, M.: Multipliers, self-induced and dual Banach algebras. Diss. Math. 470, 62 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Effros, E.G., Kishimoto, A.: Module maps and Hochschild–Johnson cohomology. Indiana Univ. Math. J. 36, 257–276 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Effros, E.G., Ruan, Z.-J.: Operator space tensor products and Hopf convolution algebras. J. Oper. Theory 50(1), 131–156 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Eymard, P.: L’algèbre de Fourier d’un groupe localement compact. Bull. Soc. Math. France 92, 181–236 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Haagerup, U.: Decomposition of completely bounded maps on operator algebras (unpublished manuscript) Google Scholar
  13. 13.
    Haagerup, U., Kraus, J.: Approximation properties for group C*-algebras and group von Neumann algebras. Trans. Am. Math. Soc. 344(2), 667–699 (1994)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hu, Z., Neufang, M., Ruan, Z.-J.: Completely bounded multipliers over locally compact quantum groups. Proc. Lond. Math. Soc. 103, 1–39 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Junge, M., Neufang, M., Ruan, Z.-J.: A representation theorem for locally compact quantum groups. Int. J. Math. 20, 377–400 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Katznelson, Y.: An Introduction to Harmonic Analysis. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Knudby, S.: The weak Haagerup property. Trans. Amer. Math. Soc. 368(5), 3469–3508 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kustermans, J., Vaes, S.: Locally compact quantum groups. Ann. Scient. Ècole Normale Supèrieure 33(6), 837–934 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Neufang, M.: Abstrakte harmonische Analyse und Modulhomomorphismen über von Neumann-algebren, PhD thesis, Universität des Saarlandes (2000)Google Scholar
  20. 20.
    Neufang, M., Ruan, Z.-J., Spronk, N.: Completely isometric representations of \(M_{{\rm cb}}A(G)\) and \({\rm UCB}({\hat{G}})\). Trans. Am. Math. Soc. 360, 1133–1161 (2008)CrossRefzbMATHGoogle Scholar
  21. 21.
    Paulsen, V.I.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  22. 22.
    Pisier, G.: An Introduction to the Theory of Operator Spaces. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    Shaefer, H.H.: Topological Vector Spaces. Springer, Berlin (1999)CrossRefGoogle Scholar
  24. 24.
    Spronk, N.: Measurable Schur multipliers and completely bounded multipliers of the Fourier algebras. Proc. Lond Math. Soc. 3, 156–175 (1991)MathSciNetGoogle Scholar
  25. 25.
    Todorov, I.G.: Herz-Schur multipliers, Lecture notes (2014). https://www.fields.utoronto.ca/programs/scientific/13-14/harmonicanalysis/
  26. 26.
    Todorov, I.G.: Interactions between harmonic analysis and operator theory. Serdica Math. J. 41, 13–34 (2015)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Tomiyama, J.: Tensor products and approximation problems of \(C^*\)-algebras. Publ. Res. Inst. Math. Sci. 11, 163–183 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Vaes, S.: Locally compact quantum groups, Ph.D. thesis, Katholieke Universitiet Leuven (2001)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsCarleton UniversityOttawaCanada
  2. 2.Mathematical Sciences Research CentreQueen’s University BelfastBelfastUK
  3. 3.School of Mathematical SciencesNankai UniversityTianjinChina
  4. 4.Department of Mathematical SciencesChalmers University of Technology and The University of GothenburgGothenburgSweden

Personalised recommendations