Advertisement

A new method toward the Landau–Ginzburg/Calabi–Yau correspondence via quasi-maps

  • Jinwon ChoiEmail author
  • Young-Hoon Kiem
Article
  • 1 Downloads

Abstract

The Landau–Ginzburg/Calabi–Yau correspondence claims that the Gromov–Witten invariant of the quintic Calabi–Yau 3-fold should be related to the Fan–Jarvis–Ruan–Witten invariant of the associated Landau–Ginzburg model via wall crossings. In this paper, we consider the stack of quasi-maps with a cosection and introduce sequences of stability conditions which enable us to interpolate between the moduli stack for Gromov–Witten invariants and the moduli stack for Fan–Jarvis–Ruan–Witten invariants.

Mathematics Subject Classification

14D23 14N35 

Notes

Acknowledgements

We thank Huai-Liang Chang, Emily Clader, Tyler Jarvis, Bumsig Kim, Jun Li and Yongbin Ruan for useful discussions.

References

  1. 1.
    Abramovich, D., Vistoli, A.: Compactifying the space of stable maps. J. Am. Math. Soc. 15, 27–75 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alexeev, V.: Compactified Jacobians and Torelli map. Publ. Res. Inst. Math. Sci. 40, 1241–1265 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Caporaso, L.: A compactification of the universal Picard variety over the moduli space of stable curves. J. Am. Math. Soc. 7(3), 589–660 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chang, H.-L., Li, J.: Gromov–Witten invariants of stable maps with fields. Int. Math. Res. Not. 18, 4163–4217 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chang, H.-L., Kiem, Y.-H., Li, J.: Torus localization and wall crossing formulas for cosection localized virtual cycles. Adv. Math. 308, 964–986 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chang, H.-L., Li, J., Li, W.-P.: Wittens top Chern class via cosection localization. Invent. Math. 200(3), 1015–1063 (2015).  https://doi.org/10.1007/s00222-014-0549-5 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chang, H.-L., Li, J., Li, W.-P., Liu, C.M.: Mixed-spin-P fields of Fermat quintic polynomials. arXiv:1505.07532
  8. 8.
    Cheong, D.: A relative stack of principal \(G\) -bundles over \({\cal{M}}^{tw}_{g, n}\). Int. J. Algebra Comput. 25(3), 481–492 (2015)CrossRefzbMATHGoogle Scholar
  9. 9.
    Cheong, D., Ciocan-Fontanine, I., Kim, B.: Orbifold quasimap theory. Math. Ann. 363(3), 777–816 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chiodo, A.: Stable twisted curves and their \(r\) -spin structures. Ann. Inst. Fourier 58(5), 1635–1689 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chiodo, A., Ruan, Y.: Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations. Invent. Math. 182(1), 117–165 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Choi, J., Chung, K.: Moduli spaces of \(\alpha \)-stable pairs and wall-crossing on \({\mathbb{P}}^2\). J. Math. Soc. Jpn. 68(2), 685–709 (2016)CrossRefzbMATHGoogle Scholar
  13. 13.
    Choi, J., Kiem, Y.-H.: Landau–Ginzburg/Calabi–Yau correspondence via wall-crossing. Chin. Ann. Math. Ser. B 38(4), 883–900 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ciocan-Fontanine, I., Kim, B.: Moduli stacks of stable toric quasimaps. Adv. Math. 225, 3022–3051 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ciocan-Fontanine, I., Kim, B.: Wall-crossing in genus zero quasimap theory and mirror maps. Algebr. Geom. 1(4), 400–448 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ciocan-Fontanine, I., Kim, B.: Higher genus quasimap wall-crossing for semi-positive targets. J. Eur. Math. Soc. 19(7), 2051–2102 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ciocan-Fontanine, I., Kim, B., Maulik, D.: Stable quasimaps to GIT quotients. J. Geom. Phys. 75, 17–47 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Clader, E.: Landau–Ginzburg/Calabi–Yau correspondence for the complete intersections \(X_{3,3}\) and \(X_{2,2,2,2}\). Adv. Math. 307, 1–52 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Edidin, D.: Notes on the Construction of the Moduli Space of Curves. Recent Progress in Intersection Theory (Bologna, 1997), pp. 85–113, Trends in Mathematics. Birkhauser, Boston (2000)Google Scholar
  20. 20.
    Faltings, G.: Moduli-stacks for bundles on semistable curves. Math. Ann. 304, 489–515 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math. 178, 1–106 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Fan, H., Jarvis, T., Ruan, Y.: A mathematical theory of the gauged linear sigma model. Geom. Topol. 22(1), 235–303 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fulton, W., MacPherson, R.: A compactification of configuration spaces. Ann. Math. 139(1), 183–225 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Guo, S., Ross, D.: The genus-one global mirror theorem for the quintic threefold. Algebr. Geom. (to appear) Google Scholar
  25. 25.
    Huybrechts, D., Lehn, M.: Framed modules and their moduli. Int. J. Math. 6, 297–324 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves. Aspects of Mathematics, E31. Friedr. Vieweg Sohn, Braunschweig (1997)CrossRefzbMATHGoogle Scholar
  27. 27.
    Keel, S.: Intersection theory of moduli space of stable \(n\)-pointed curves of genus zero. Trans. Am. Math. Soc. 330(2), 545–574 (1992)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Kiem, Y.-H., Li, J.: Localizing virtual cycles by cosections. J. Am. Math. Soc. 26(4), 1025–1050 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kiem, Y.-H., Li, J.: A wall crossing formula of Donaldson–Thomas invariants without Chern–Simons functional. Asian J. Math. 17(1), 63–94 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kiem, Y.-H., Moon, H.-B.: Moduli space of weighted pointed stable rational curves via GIT. Osaka J. Math. 48, 1115–1140 (2011)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Le Potier, J.: Systmes cohrents et structures de niveau. Asterisque No. 214 (1993)Google Scholar
  32. 32.
    Lee, Y.-P., Priddis, N., Shoemaker, M.: A proof of the Landau–Ginzburg/Calabi–Yau correspondence via the crepant transformation conjecture. Ann. Sci. Éc. Norm. Supér. (4) 49(6), 1403–1443 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Li, L.: Chow motive of Fulton–MacPherson configuration spaces and wonderful compactifications. Mich. Math. J. 58(2), 565–598 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Manolache, C.: Virtual pushforwards. Geom. Topol. 16(4), 2003–2036 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Marian, A., Oprea, D., Pandharipande, R.: The moduli space of stable quotients. Geom. Topol. 15(3), 1651–1706 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Ross, D., Ruan, Y.: Wall-crossing in genus zero Landau–Ginzburg theory. J. Reine. Angew. Math.  https://doi.org/10.1515/crelle-2015-0005
  37. 37.
    Simpson, C.: Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes tudes Sci. Publ. Math. 79, 47–129 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Toda, Y.: Moduli spaces of stable quotients and wall crossing phenomena. Composit. Math. 147, 1479–1518 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Witten, E.: Phases of N = 2 theories in two dimensions. Nucl. Phys. B 403, 159–222 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Research Institute of Natural SciencesSookmyung Women’s UniversitySeoulSouth Korea
  2. 2.Department of Mathematics and Research Institute of MathematicsSeoul National UniversitySeoulSouth Korea

Personalised recommendations