Mathematische Zeitschrift

, Volume 292, Issue 1–2, pp 403–425 | Cite as

Les formes automorphes feuilletées

  • Jean-Pierre OtalEmail author


We introduce a family \(\{\mathcal {B}_s(\Gamma )\}_{s\in \mathbb C}\) of line bundles over the unit tangent bundle \(\text {T}^1X_\Gamma \) of a hyperbolic surface \(X_\Gamma \). These bundles vary in an holomorphic way when restricted to the leaves of the stable foliation and to the leaves of the unstable foliation. A stable (resp. unstable) foliated automorphic form of weight s on \(\text {T}^1X_\Gamma \) is defined as a continuous section of \(\mathcal {B}_s(\Gamma )\rightarrow \text {T}^1X_\Gamma \) which is holomorphic along the leaves of the stable (resp. unstable) foliation. We study mainly the case when \(X_\Gamma \) is compact. In that situation we construct, from any \(s(1-s)\)-eigenfunction of the Laplace operator on \(X_\Gamma \), two foliated automorphic forms, one of weight s and one of weight \(1-s\). We give some general properties of the foliated automorphic forms ; in particular, we construct when \(0<\mathfrak {R}s<1\), an isomorphism between the spaces \(\mathcal {A}_s (\Gamma )\) et \(\mathcal {A}_{1-s}(\Gamma )\) of the stable automorphic forms of respective weights s and \(1-s\).



  1. 1.
    Bol, G.: Invarianten linearer Differentialgleichungen. Abh. Math. Sem. Hambg. Univ. 16, 1–28 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Deroin, B.: Non-rigidity of hyperbolic surfaces laminations. Proc. AMS Paris 135(3), 873–881 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Duren, P.: Theory of \(H^p\) Spaces, Pure and Applied Mathematics, vol. 38. Academic Press, New York (1970)Google Scholar
  4. 4.
    Ghys, E.: Laminations par surfaces de Riemann, Dynamique et géométrie complexes (Lyon, 1997). Panor. et Synthèses, 8, pp. 49–95, SMF, Paris (1999)Google Scholar
  5. 5.
    Gel’fand, I., Graev, M., Pyatestskii-Shapiro, I.: Representation Theory and Automorphic Functions. W. B. Saunders Company, Philadelphia (1969)Google Scholar
  6. 6.
    Helgason, S.: Topics in Harmonic Analysis on Homogeneous Spaces, Progress in Mathematics, vol. 13. Birkhäuser, Boston (1981)zbMATHGoogle Scholar
  7. 7.
    Biswas, I., Misra, G.: \(\widetilde{\text{ SL(2, }\mathbb{R})}\)-homogeneous vector bundles. Int. J. Math. 19(1), 1–19 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Otal, J.-P.: Sur les fonctions propres du Laplacien du disque hyperbolique. Comptes Rendus de l’Académie des Sciences Paris 327, 161–166 (1998)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Riesz, M.: L’intégrale de Riemann-Liouville et le problème de Cauchy. Acta Math. 81, 1–223 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Sally, P.J.: Intertwining operators and the representations of \(\text{ SL(2, }\mathbb{R})\). J. Funct. Anal. 6, 441–453 (1970)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CNRS, UMR 5219, Institut de Mathématiques de ToulouseUniversité Paul SabatierToulouseFrance

Personalised recommendations