Orthogonal testing families and holomorphic extension from the sphere to the ball
Article
First Online:
- 106 Downloads
Abstract
Let \(\mathbb {B}^2\) denote the open unit ball in \(\mathbb {C}^2\), and let \(p\in \mathbb {C}^2\)\\(\overline{\mathbb {B}^2}\). We prove that if f is an analytic function on the sphere \(\partial \mathbb {B}^2\) that extends holomorphically in each variable separately and along each complex line through p, then f is the trace of a holomorphic function in the ball.
Keywords
Analytic discs Holomorphic extension Testing familiesMathematics Subject Classification
Primary 32V25 Secondary 32V20 32V40Notes
References
- 1.Agranovsky, M., Val’sky, R.: Maximality of invariant algebras of functions. Sibirsk. Mat. Z̆. 12, 3–12 (1971)MathSciNetGoogle Scholar
- 2.Agranovsky, M., Semenov, A.M.: Boundary analogues of the Hartogs theorem. Sibirsk. Mat. Z̆. 12(1), 168–170 (1991). (translation in Siberian Math. J.32 (1991), no. 1)MathSciNetGoogle Scholar
- 3.Agranovsky, M.: Analog of a theorem of Forelli for boundary values of holomorphic functions on the unit ball of \(\mathbb{C}^n\). J. Anal. Math. 113, 293–304 (2011)MathSciNetCrossRefGoogle Scholar
- 4.Baracco, L., Tumanov, A., Zampieri, G.: Extremal discs and holomorphic extension from convex hypersurfaces. Ark. Mat. 45(1), 1–13 (2007)MathSciNetCrossRefGoogle Scholar
- 5.Baracco, L.: Holomorphic extension from the sphere to the ball. J. Math. Anal. Appl. 388(2), 760–762 (2012)MathSciNetCrossRefGoogle Scholar
- 6.Baracco, L.: Separate holomorphic extension along lines and holomorphic extension from the sphere to the ball. Am. J. Math. 135(2), 493–497 (2013)MathSciNetCrossRefGoogle Scholar
- 7.Baracco, L.: Holomorphic extension from a convex hypersurface. Asian J. Math. 20(2), 263–266 (2016)MathSciNetCrossRefGoogle Scholar
- 8.Baracco, L., Pinton, S.: Testing families of complex lines for the unit ball. J. Math. Anal. Appl. 458(2), 1449–1455 (2018)MathSciNetCrossRefGoogle Scholar
- 9.Dinh, T.-C.: Conjecture de Globevnik-Stout et théorème de Morera pour une chaîne holomorphe. Ann. Fac. Sci. Touluse Math. 8(2), 235–257 (1999)CrossRefGoogle Scholar
- 10.Globevnik, J.: Small families of complex lines for testing holomorphic extendibility. Am. J. Math. 134(6), 1473–1490 (2012)MathSciNetCrossRefGoogle Scholar
- 11.Globevnik, J.: Meromorphic extensions from small families of circles and holomorphic extensions from spheres. Trans. Am. Math. Soc. 364(11), 5857–5880 (2012)MathSciNetCrossRefGoogle Scholar
- 12.Hanges, N., Trèves, F.: Propagation of holomorphic extendability of CR functions. Math. Ann. 263(2), 157–177 (1983)MathSciNetCrossRefGoogle Scholar
- 13.Hartogs, F.: Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten. Math. Ann. 62(1), 1–88 (1906)MathSciNetCrossRefGoogle Scholar
- 14.Lawrence, M.G.: Hartog’s separate analyticity theorem for CR functions. Internat. J. Math. 18(3), 219–229 (2007)MathSciNetCrossRefGoogle Scholar
- 15.Lawrence, M.G.: The \(L^p\) CR Hartogs separate analyticity theorem for convex domains. Math. Z. 288(1–2), 401–414 (2018)MathSciNetCrossRefGoogle Scholar
- 16.Lempert, L.: La métrique de Kobayashi et la représentation des domaines sur la boule. Bull. Soc. Math. France 109(4), 427–474 (1981)MathSciNetCrossRefGoogle Scholar
- 17.Rudin, W.: Function Theory in the Unit Ball of \(\mathbb{C}^n\), Grundlehren Math. Wiss., vol. 241. Springer, New York (1980)CrossRefGoogle Scholar
- 18.Stout, E.L.: The boundary values of holomorphic functions of several complex variables. Duke Math J. 44(1), 105–108 (1977)MathSciNetCrossRefGoogle Scholar
- 19.Tumanov, A: Extremal discs and the geometry of CR manifold. Real methods in complex and CR geometry, pp. 191–212, Lecture Notes in Math, 1848, Springer, Berlin (2004)Google Scholar
- 20.Tumanov, A.: Testing analyticity on circles. Am. J. Math. 129(3), 785–790 (2007)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2019