Advertisement

Sturm bounds for Siegel modular forms of degree 2 and odd weights

  • Toshiyuki KikutaEmail author
  • Sho Takemori
Article
  • 24 Downloads

Abstract

We correct the proof of the theorem in the previous paper presented by Kikuta, which concerns Sturm bounds for Siegel modular forms of degree 2 and of even weights modulo a prime number dividing \(2\cdot 3\). We give also Sturm bounds for them of odd weights for any prime numbers, and we prove their sharpness. The results cover the case where Fourier coefficients are algebraic numbers.

Keywords

Siegel modular forms Congruences for modular forms Fourier coefficients J. Sturm 

Mathematics Subject Classification

Primary 11F33 Secondary 11F46 

Notes

Acknowledgements

The authors would like to thank the referee for a detailed reading of the manuscript, for helpful advice that improved the presentation of this paper. Toshiyuki Kikuta is supported by JSPS Kakenhi JP18K03229. Sho Takemori is partially supported by JSPS Kakenhi 23224001.

References

  1. 1.
    Choi, D., Choie, Y., Kikuta, T.: Sturm type theorem for Siegel modular forms of genus 2 modulo \(p\). Acta Arith. 158(2), 129–139 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gritsenko, V .A., Nikulin, V .V.: Igusa modular forms and ’the simplest’ Lorentzian Kac–Moody algebras. Sb. Math. 187(11), 1601 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gritsenko, V.A., Nikulin, V.V.: Siegel automorphic form corrections of some Lorentzian Kac–Moody Lie algebras. Am. J. Math. 119, 181–224 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Igusa, J.: On Siegel modular forms of genus two. Am. J. Math. 84, 175–200 (1962)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Igusa, J.: On Siegel modular forms of genus two (II). Am. J. Math. 86, 392–412 (1964)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Igusa, J.: On the ring of modular forms of degree two over \({\mathbb{Z}}\). Am. J. Math. 101, 149–183 (1979)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kikuta, T.: Remark on Sturm bounds for Siegel modular forms of degree 2. Proc. Jpn. Acad. Ser. A Math. Sci. 91(6), 82–84 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kikuta, T., Kodama, H., Nagaoka, S.: Note on Igusa’s cusp form of weight 35. Rocky Mt. J. Math. 45(3) (2015) (to appear)Google Scholar
  9. 9.
    Nagaoka, S.: Note on mod \(p\) Siegel modular forms. Math. Z. 235(2), 405–420 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nagaoka, S.: Note on mod \(p\) Siegel modular forms II. Math. Z. 251(4), 821–826 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Poor, C., Yuen, D.: Paramodular cusp forms. Math. Comput. 84(293), 1401–1438 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rasmussen, J.: Higher congruences between modular forms. Ph.D. thesis, University of Copenhagen (2009)Google Scholar
  13. 13.
    Richter, O.K., Westerholt-Raum, M.: Sturm bounds for Siegel modular forms. Res. Number Theory 1(1), 5 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Serre, J.P.: Formes modulaires et fonctions zêta \(p\)-adiques. In: Modular Functions of One Variable III. Springer, New York, pp 191–268 (1973)Google Scholar
  15. 15.
    Sturm, J.: On the congruence of modular forms. In: Number Theory. Springer, New York, pp 275–280 (1987)Google Scholar
  16. 16.
    Van Der Geer, G.: Siegel modular forms and their applications. In: The 1–2–3 of Modular Forms. Springer, New York, pp 181–245 (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Information and Systems Engineering, Faculty of Information EngineeringFukuoka Institute of TechnologyFukuokaJapan
  2. 2.Max-Planck-Institut für MathematikBonnGermany

Personalised recommendations