On the strong maximum principle for nonlocal operators

  • Sven Jarohs
  • Tobias WethEmail author


In this paper we derive a strong maximum principle for weak supersolutions of nonlocal equations of the form
$$\begin{aligned} Iu=c(x) u \qquad \text { in }\,\Omega , \end{aligned}$$
where \(\Omega \subset \mathbb {R}^N\) is a domain, \(c\in L^{\infty }(\Omega )\) and I is an operator of the form
$$\begin{aligned} Iu(x)=P.V.\int \limits _{\mathbb {R}^N}(u(x)-u(y))j(x-y)\ dy \end{aligned}$$
with a nonnegative kernel function j. We formulate minimal positivity assumptions on j corresponding to a class of operators, which includes highly anisotropic variants of the fractional Laplacian. Somewhat surprisingly, this problem leads to the study of general lattices in \(\mathbb {R}^N\). Our results extend to the regional variant of the operator I and, under weak additional assumptions, also to the case of x-dependent kernel functions.


Nonlocal operator Strong maximum principle Weak maximum principle 



The authors thank Moritz Kassmann for valuable discussions.


  1. 1.
    Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  2. 2.
    Bogdan, K., Byczkowski, T.: Potential theory of Schrödinger operator based on fractional Laplacian. Probab. Math. Stat. 20(2), 293–335 (2000)zbMATHGoogle Scholar
  3. 3.
    Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. Henri Poincare Anal. Non Linaire 31, 23–53 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Caffarelli, L.A., Roquejoffre, J.-M., Sire, Y.: Variational problems for free boundaries for the fractional Laplacian. J. Eur. Math. Soc. (JEMS) 12(5), 1151–1179 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dyda, B., Kassmann, M.: Regularity estimates for elliptic nonlocal operators (2015). Preprint
  6. 6.
    Dyda, B., Kassmann, M.: Function spaces and extension results for nonlocal Dirichlet problems (2016). Preprint
  7. 7.
    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (2015)CrossRefGoogle Scholar
  8. 8.
    Fall, M.M., Weth, T.: Liouville theorems for a general class of nonlocal operators. Potential Anal. 45, 187–200 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Felsinger, M., Kassmann, M.: Local regularity for parabolic nonlocal operators. Commun. Partial Differ. Equ. 38(9), 1539–1573 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Felsinger, M., Kassmann, M., Voigt, P.: The Dirichlet problem for nonlocal operators. Math. Z. 279, 779–809 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    García-Melián, J., Rossi, J.D.: Maximum and antimaximum principles for some nonlocal diffusion operators. Nonlinear Anal. 71(12), 6116–6121 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)zbMATHGoogle Scholar
  13. 13.
    Grisvard, P.: SIAM Classics in Applied Mathematics. Elliptic problems in nonsmooth domains. SIAM, Philadelphia (2011)Google Scholar
  14. 14.
    Guan, Q.Y., Ma, Z.M.: Boundary problems for fractional Laplacians. Stoch. Dyn. 5(3), 385–424 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jacob, N.: Pseudo Differential Operators and Markov Processes, vol. I, II, III. Imperial College Press, London (2005)zbMATHGoogle Scholar
  16. 16.
    Jarohs, S., Weth, T.: Symmetry via antisymmetric maximum principles in nonlocal problems of variable order. Ann. Mat. Pura Appl. 195.1(4), 273–291 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jarohs, S.: Symmetry via Maximum Principles for Nonlocal Nonlinear Boundary Value Problems. Doctoral thesis (2015)Google Scholar
  18. 18.
    Kassmann, M., Mimica, A.: Intrinsic scaling properties for nonlocal operators. J. Eur. Math. Soc. 19(4), 983–1011 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Musina, R., Nazarov, A.I.: Strong maximum principles for fractional Laplacians (2017). Preprint
  20. 20.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics: I Functional Analysis. Academic Press, San Diego (1980)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für MathematikGoethe-Universität, FrankfurtFrankfurtGermany

Personalised recommendations