Mathematische Zeitschrift

, Volume 291, Issue 3–4, pp 1337–1356

# Weighted sum formulas of multiple zeta values with even arguments

• Zhonghua Li
• Chen Qin
Article

## Abstract

We prove a weighted sum formula of the zeta values at even arguments, and a weighted sum formula of the multiple zeta values with even arguments and its zeta-star analogue. The weight coefficients are given by (symmetric) polynomials of the arguments. These weighted sum formulas for the zeta values and for the multiple zeta values were conjectured by L. Guo, P. Lei and J. Zhao.

## Keywords

Multiple zeta values Multiple zeta-star values Bernoulli numbers Weighted sum formulas

11M32 11B68

## References

1. 1.
Dilcher, K.: Sums of products of Bernoulli numbers. J. Number Theory 60, 23–41 (1996)
2. 2.
Gangl, H., Kaneko, M., Zagier, D.: Double zeta values and modular forms. In: Automorphic Forms and Zeta Functions, Proceedings of the Conference in memory of Tsuneo Arakawa. S. Böcherer, T. Ibukiyama, M. Kaneko, F. Sato (eds.), World Scientific, New Jersey, 71-106, (2006)Google Scholar
3. 3.
Guo, L., Lei, P., Zhao, J.: Families of weighted sum formulas for multiple zeta values. Int. J. Number Theory 11(3), 997–1025 (2015)
4. 4.
Hoffman, M.E.: Multiple harmonic series. Pacific J. Math. 152(2), 275–290 (1992)
5. 5.
Hoffman, M.E.: The algebra of multiple harmonic series. J. Algebra 194(2), 477–495 (1997)
6. 6.
Hoffman, M.E.: Quasi-symmetric functions and mod $$p$$ multiple harmonic sums. Kyushu J. Math. 69, 345–366 (2015)
7. 7.
Hoffman, M.E.: On multiple zeta values of even arguments. Int. J. Number Theory 13, 705–716 (2017)
8. 8.
Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta values. Compos. Math. 142(2), 307–338 (2006)
9. 9.
Li, Z., Qin, C.: Some relations deduced from regularized double shuffle relations of multiple zeta values, preprint, arXiv:1610.05480
10. 10.
Muneta, S.: Algebraic setup of non-strict multiple zeta values. Acta Arith. 136(1), 7–18 (2009)
11. 11.
Petojević, A., Srivastava, H.M.: Computation of Euler’s type sums of the products of Bernoulli numbers. Appl. Math. Lett. 22, 796–801 (2009)
12. 12.
Racinet, G.: Doubles melanges des polylogarithmes multiples aux racines de l’unite. Publ. Math. Inst. Hautes Études Sci. 95, 185–231 (2002)