Mathematische Zeitschrift

, Volume 292, Issue 3–4, pp 1387–1430 | Cite as

Two-block Springer fibers of types C and D: a diagrammatic approach to Springer theory

  • Catharina Stroppel
  • Arik WilbertEmail author


We explain an elementary topological construction of the Springer representation on the homology of (topological) Springer fibers of types C and D in the case of nilpotent endomorphisms with two Jordan blocks. The Weyl group and component group actions admit a diagrammatic description in terms of cup diagrams which appear in the definition of arc algebras of types B and D. We determine the decomposition of the representations into irreducibles and relate our construction to classical Springer theory. As an application we obtain presentations of the cohomology rings of all two-block Springer fibers of types C and D. Moreover, we deduce explicit isomorphisms between the Kazhdan-Lusztig cell modules attached to the induced trivial module and the irreducible Specht modules in types C and D.


Springer fiber Action on cohomology Springer theory Diagram algebras Flag varieties Betti numbers 

Mathematics Subject Classification

Primary 14M15 17B08 17B10 Secondary 05E10 20C08 20F36 



The authors thank Michael Ehrig and Daniel Tubbenhauer for many helpful comments and interesting discussions and Daniel Juteau and Martina Lanini for raising the question how to make the action of the component group explicit in our construction. Parts of this article appeared in the second author’s PhD thesis under the supervision of the first author.


  1. 1.
    Abouzaid, M., Smith, I.: The symplectic arc algebra is formal. Duke Math. J. 165(6), 985–1060 (2016)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Björner, A., Brenti, F.: Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, vol. 231. Springer, Berlin (2005)zbMATHGoogle Scholar
  3. 3.
    Bezrukavnikov, R.: Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone. Represent. Theory 7, 1–18 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Beilinson, A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Am. Math. Soc. 9(2), 473–527 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Brion, M., Polo, P.: Generic singularities of certain Schubert varieties. Math. Z. 231, 301–324 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Braden, T.: Perverse sheaves on Grassmannians. Can. J. Math. 54(3), 493–532 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra I: cellularity. Mosc. Math. J. 11(4), 685–722 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Can, H.: Representations of the generalized symmetric groups. Beiträge Algebra Geom. 37(2), 289–307 (1996)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Cox, A., De Visscher, M., Martin, P.: A geometric characterisation of the blocks of the Brauer algebra. J. Lond. Math. Soc. (2) 80(2), 471–494 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkhäuser, Boston (1997)zbMATHGoogle Scholar
  11. 11.
    Comes, J., Heidersdorf, T.: Thick ideals in Deligne’s category \( {\rm Re}{\rm p}(O_\delta )\). J. Algebra 480, 237–265 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Chen, Y., Khovanov, M.: An invariant of tangle cobordisms via subquotients of arc rings. Fund. Math. 225(1), 23–44 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    De Concini, C., Procesi, C.: Symmetric functions, conjugacy classes and the flag variety. Invent. Math. 64, 203–219 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ehrig, M., Stroppel, C.: 2-row Springer fibres and Khovanov diagram algebras for type D. Can. J. Math. 68(6), 1285–1333 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Ehrig, M., Stroppel, C.: Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians. Sel. Math. (N.S.) 22(3), 1455–1536 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ehrig, M., Stroppel, C.: Koszul gradings on Brauer algebras. Int. Math. Res. Not. 2016(13), 3970–4011 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Ehrig, M., Stroppel, C.: On the category of finite-dimensional representations of \({\rm OSp}(r\vert 2n)\): Part I, Representation theory—current trends and perspectives. EMS Series of Congress Reports, European Mathematical Society (EMS) (2016)Google Scholar
  18. 18.
    Gerstenhaber, M.: Dominance over the classical groups. Ann. Math. 74(3), 532–569 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Hotta, R., Springer, T.A.: A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups. Invent. Math. 41, 113–127 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Humphreys, J .E.: Reflection Groups and Coxeter Groups, Cambridge Studies in Adv. Math., vol. 29. Cambridge University Press, Cambridge (1992)Google Scholar
  21. 21.
    Khovanov, M.: A functor-valued invariant of tangles. Algebraic Geom. Top. 2, 665–741 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Khovanov, M.: Crossingless matchings and the (n, n) Springer varieties. Commun. Contemp. Math. 6, 561–577 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Kim, D.: Euler Characteristic of Springer fibers. arXiv:1511.01961 (2016) (to appear in Transform. Groups)
  24. 24.
    Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53(2), 165–184 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Kumar, S., Procesi, C.: An algebro-geometric realization of equivariant cohomology of some Springer fibers. J. Algebra 368, 70–74 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Khovanov, M., Seidel, P.: Quivers, Floer cohomology, and braid group actions. J. Am. Math. Soc. 15(1), 203–271 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Li, Y.: Quiver varieties and symmetric pairs. arXiv:1801.06071 (2018)
  28. 28.
    Lejczyk, T., Stroppel, C.: A graphical description of \((D_n, A_{n-1})\) Kazhdan-Lusztig polynomials. Glasgow Math. J. 55(2), 313–340 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Lusztig, G.: Green polynomials and singularities of unipotent classes. Adv. Math. 42, 169–173 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Lusztig, G.: An induction theorem for Springer’s representations, Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. in Pure Math., vol. 40. Math. Soc. Japan, Tokyo, pp. 253–259 (2004)Google Scholar
  31. 31.
    Macdonald, I.G.: Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs. Oxford University Press, Oxford (1995)Google Scholar
  32. 32.
    Mayer, S.J.: On the characters of the Weyl group of type D. Math. Proc. Camb. Philos. Soc. 77, 259–264 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Mazorchuk, V., Stroppel, C.: \(G(l, k, d)\)-modules via groupoids. J. Algebraic Comb. 43(1), 11–32 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Naruse, H.: On an isomorphism between Specht modules and left cell of \({S}_n\). Tokyo J. Math. 12(2), 247–267 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Russell, H.M., Tymoczko, J.: Springer representations on the Khovanov Springer varieties. Math. Proc. Camb. Philos. Soc. 151, 59–81 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Russell, H.M.: A topological construction for all two-row Springer varieties. Pac. J. Math. 253, 221–255 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Serre, J.-P.: Linear Representations of Finite Groups, Graduate Texts in Mathematics, vol. 42. Springer, Berlin (1977)CrossRefGoogle Scholar
  38. 38.
    Shoji, T.: On the Springer representations of the Weyl groups of classical algebraic groups. Comm. Algebra 7, 1713–1745 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Shoji, T.: On the green polynomials of classical groups. Invent. Math. 74, 239–267 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Soergel, W.: Kazhdan-Lusztig-Polynome und eine Kombinatorik für Kipp-Moduln. Rep. Theory 1, 37–68 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Spaltenstein, N.: Classes Unipotentes et Sous-groupes de Borel, Lecture Notes in Mathematics, vol. 946. Springer, Berlin (1982)zbMATHCrossRefGoogle Scholar
  42. 42.
    Springer, T.A.: Trigonometric sums, green functions of finite groups and representations of Weyl groups. Invent. Math. 36, 173–207 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Springer, T.A.: A construction of representations of Weyl groups. Invent. Math. 44, 279–293 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Stroppel, C., Webster, B.: 2-Block Springer fibers: convolution algebras and coherent sheaves. Comment. Math. Helv. 87, 477–520 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Tanisaki, T.: Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups. Tohoku Math. J. 34, 575–585 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Tokuyama, T.: A theorem on the representations of the Weyl groups of type \({D}_n\) and \({B}_{n-1}\). J. Algebra 90, 430–434 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Williamson, J.: The conjunctive equivalence of pencils of hermitian and anti-hermitian matrices. Am. J. Math. 59(2), 399–413 (1937)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Wilbert, A.: Topology of two-row Springer fibers for the even orthogonal and symplectic group. Trans. Am. Math. Soc. 370(4), 2707–2737 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Yun, Z.: Lectures on Springer theories and orbital integrals. arXiv:1602.01451 (2016) (to appear in the PCMI proceedings)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of BonnBonnGermany
  2. 2.School of Mathematics and StatisticsUniversity of MelbourneMelbourneAustralia

Personalised recommendations