Advertisement

Mathematische Zeitschrift

, Volume 291, Issue 3–4, pp 931–958 | Cite as

Sharp Hölder continuity of the Lyapunov exponent of finitely differentiable quasi-periodic cocycles

  • Ao Cai
  • Claire Chavaudret
  • Jiangong You
  • Qi ZhouEmail author
Article
  • 90 Downloads

Abstract

We show that if the base frequency is Diophantine, then the Lyapunov exponent of a \(C^{k}\) quasi-periodic \(SL(2,{\mathbb {R}})\) cocycle is 1 / 2-Hölder continuous in the almost reducible regime. As a consequence, we show that if the frequency is Diophantine, and the potential is small, then the integrated density of states of the corresponding quasi-periodic Schrödinger operator is 1 / 2-Hölder continuous.

Notes

Acknowledgements

C. Chavaudret was supported by the ANR “BEKAM” and the ANR “Dynamics and CR Geometry”. J. You was partially supported by NSFC grant (11471155) and 973 projects of China (2014CB340701). Q. Zhou was partially supported by NSFC grant (11671192), “Deng Feng Scholar Program B” of Nanjing University, Specially-appointed professor programe of Jiangsu province.

References

  1. 1.
    Hadj Amor, S.: Hölder continuity of the rotation number for the quasi-periodic co-cycles in \(SL(2,\mathbb{R})\). Commun. Math. Phys. 287, 565–588 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Avila, A.: The absolutely continuous spectrum of the almost Mathieu operator. Preprint. arXiv:0810.2965
  3. 3.
    Avila, A.: Global theory of one-frequency Schrödinger operators. Acta Math. 215, 1–54 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Avila, A., Jitomirskaya, S.: Almost localization and almost reducibility. J. Eur. Math. Soc. 12, 93–131 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Avila, A., Jitomirskaya, S., Sadel, C.: Complex one-frequency cocycles. J. Eur. Math. Soc. 16(9), 1915–1935 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Avila, A., Krikorian, R.: Monotonic cocycles. Invent. Math. 202, 271–331 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Avila, A., Viana, M., Eskin, A.: Continuity of Lyapunov exponents of random matrix products. In preparationGoogle Scholar
  8. 8.
    Avila, A., Fayad, B., Krikorian, R.: A KAM scheme for \(SL(2,\mathbb{R})\) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21, 1001–1019 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Avila, A., You, J., Zhou, Q.: Sharp phase transitions for the almost Mathieu operator. Duke Math. J. 166(14), 2697–2718 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Avila, A., You, J., Zhou, Q.: Dry ten Martini problem in the non-critical case. PreprintGoogle Scholar
  11. 11.
    Avron, J., Simon, B.: Almost periodic Schrödinger operators. II: The integrated density of states. Duke Math. J. 50, 369–391 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Backes, L., Brown, A.W., Butler, C.: Continuity of Lyapunov exponents for cocycles with invariant holonomies. Preprint. https://arxiv.org/pdf/1507.08978v2.pdf
  13. 13.
    Berti, M., Biasco, L.: Forced vibrations of wave equations with non-monotone nonlinearities. Ann. I. H. Poincaré-AN. 23(4), 439–474 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bocker-Neto, C., Viana, M.: Continuity of Lyapunov exponents for random two-dimensional matrices. Ergodic Theory Dyn. Syst. 37, 1413–1442 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bochi, J.: Discontinuity of the Lyapunov exponent for non-hyperbolic cocycles. Unpublished. http://www.mat.uc.cl/ jairo.bochi/docs/discont.pdf (1999)
  16. 16.
    Bochi, J.: Genericity of zero Lyapunov exponents. Ergodic Theory Dyn. Syst. 22(6), 1667–1696 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bourgain, J.: Positivity and continuity of the Lyapunov exponent for shifts on \(\mathbb{T}^d\) with arbitrary frequency vector and real analytic potential. J. Anal. Math. 96, 313–355 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bourgain, J., Jitomirskaya, S.: Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J. Stat. Phys. 108, 1203–1218 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bourgain, J.: Hölder regularity of integrated density of states for the almost Mathieu operator in a perturbative regime. Lett. Math. Phys. 51, 83–118 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Chavaudret, C.: Strong almost reducibility for analytic and Gevrey quasi-periodic cocycles. Bull. Soc. Math. Fr. 141, 47–106 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Chavaudret, C.: Almost reducibility for finitely differentiable \(SL(2,\mathbb{R})\)-valued quasi-periodic cocycles. Nonlinearity 25, 481–494 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)CrossRefzbMATHGoogle Scholar
  23. 23.
    Eliasson, L.H.: Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146, 447–482 (1992)CrossRefzbMATHGoogle Scholar
  24. 24.
    Fayad, B., Krikorian, R.: Rigidity results for quasiperiodic \(SL(2,\mathbb{R})\)-cocycles. J. Mod. Dyn. 3(4), 479–510 (2009)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Furman, A.: On the multiplicative ergodic theorem for the uniquely ergodic systems. Ann. Inst. H. Poincaré Prob. Stat. 33, 797–815 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Goldstein, M., Schlag, W.: Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions. Ann. Math. 154(1), 155–203 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Goldstein, M., Schlag, W.: Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues. Geom. Funct. Anal. 18(3), 755–869 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hou, X., You, J.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190, 209–260 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Jitomirskaya, S., Kachkovskiy, I.: All couplings localization for quasiperiodic operators with Lipschitz monotone potentials. To appear in J. Eur. Math. Soc. arxiv:1509.02226
  30. 30.
    Jitomirskaya, S., Koslover, D.A., Schulteis, M.S.: Continuity of the Lyapunov exponent for analytic quasiperiodic cocycles. Ergodic Theory Dyn. Syst. 29, 1881–1905 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84, 403–438 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Klein, S.: Localization for quasiperiodic Schrödinger operators with multivariable Gevrey potential functions. J. Spectr. Theory 4, 1–53 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Knill, O.: The upper Lyapunov exponent of \(SL(2,\mathbb{R})\) cocycles: discontinuity and the problem of positivity. Lect. Notes Math. 1486, 86–97 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Krikorian, R.: Reducibility of skew-product systems with values in compact groups. Asterisque- Societe Mathematique de France 259(259) (1999)Google Scholar
  35. 35.
    Leguil, M., You, J., Zhao, Z., Zhou, Q.: Asymptotics of spectral gaps of quasi-periodic Schrödinger operators. Preprint. https://arxiv.org/pdf/1712.04700.pdf
  36. 36.
    Ruelle, D.: Analyticity properties of the characteristic exponents of random matrix products. Adv. Math. 32, 68–80 (1979)CrossRefzbMATHGoogle Scholar
  37. 37.
    Thouvenot, J.: An example of discontinuity in the computation of the Lyapunov exponents. Proc. Steklov Inst. Math. 216, 366–369 (1997)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Viana, M.: Lectures on Lyapunov Exponents. Cambridge Studies in Advanced Mathematics, vol. 145. Cambridge University Press, Cambridge (2014)CrossRefzbMATHGoogle Scholar
  39. 39.
    Wang, Y., You, J.: Examples of discontinuity of Lyapunov exponent in smooth quasi-periodic cocycles. Duke Math. J. 162, 2363–2412 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wang, Y., Zhang, Z.: Uniform positivity and continuity of Lyapunov exponents for a class of \(C^2\) quasiperiodic Schrödinger cocycles. J. Func. Anal. 268, 2525–2585 (2015)CrossRefzbMATHGoogle Scholar
  41. 41.
    You, J., Zhou, Q.: Embedding of analytic quasi-periodic cocycles into analytic quasi-periodic linear systems and its applications. Commun. Math. Phys. 323, 975–1005 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Zehnder, E.: Generalized implicit function theorems with applications to some small divisor problems, I. Commun. Pure Appl. Math. XXVIII, 91–140 (1975)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ao Cai
    • 1
  • Claire Chavaudret
    • 2
  • Jiangong You
    • 3
  • Qi Zhou
    • 1
    Email author
  1. 1.Department of MathematicsNanjing UniversityNanjingChina
  2. 2.Laboratoire J.A. DieudonnéUniversité de Nice-Sophia Antipolis (Parc Valrose)Nice Cedex 02France
  3. 3.Chern Institute of Mathematics and LPMCNankai UniversityTianjinChina

Personalised recommendations