Mathematische Zeitschrift

, Volume 291, Issue 3–4, pp 821–829 | Cite as

On the Tate spectrum of \(\mathrm {tmf}\) at the prime 2

  • Scott M. BaileyEmail author
  • Nicolas Ricka


Computations involving the Mahowald invariant prompted Mahowald and Shick to develop the slogan: “the Mahowald invariant of \(v_n\)-periodic homotopy is \(v_n\)-torsion”. While neither a proof, nor a precise statement, of this slogan appears in the literature, numerous authors have offered computational evidence in support of its fundamental idea. The Mahowald invariant is closely related to his inverse limit description of the Tate spectrum, and computations have shown the Tate spectrum of \(v_n\)-periodic cohomology theories to be \(v_n\)-torsion. The purpose of this paper is to split the Tate spectrum of \(\mathrm {tmf}\) as a wedge of suspensions of \(\mathrm {ko}\), providing yet another example in support of the slogan to the existing literature.


Topological modular forms Tate spectrum Mahowald invariant 

Mathematics Subject Classification

55P42 55T15 


  1. 1.
    Ando, M., Morava, J., Sadofsky, H.: Completions of \(\mathbf{Z}/(p)\)-Tate cohomology of periodic spectra. Geom. Topol. 2, 145–174 (1998). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Behrens, M.: Notes on the Construction of tmf. (2007). Accessed Feb 2017
  3. 3.
    Bruner, R.R., Davis, D.M., Mahowald, M.: Nonimmersions of real projective spaces implied by tmf. In: Recent Progress in Homotopy Theory (Baltimore, MD, 2000). Contemporary Mathematics, vol. 293, pp. 45–68. American Mathematical Society, Providence, RI (2002).
  4. 4.
    Davis, D.M., Johnson, D.C., Klippenstein, J., Mahowald, M., Wegmann, S.: The spectrum \((P\wedge {\rm BP}\langle 2\rangle )_{-\infty }\). Trans. Am. Math. Soc. 296(1), 95–110 (1986). zbMATHGoogle Scholar
  5. 5.
    Davis, D.M., Mahowald, M.: The spectrum \((P\wedge b{\rm o})_{-\infty }\). Math. Proc. Camb. Philos. Soc. 96(1), 85–93 (1984). CrossRefzbMATHGoogle Scholar
  6. 6.
    Goerss, P.G.: Topological modular forms (after Hopkins, Miller, and Lurie). Article to accompany Bourbaki presentation of 14 March 2009. (2009)
  7. 7.
    Greenlees, J., May, J.: Generalized Tate cohomology. Mem. Am. Math. Soc. 113(543), viii+178 (1995)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Lin, W.H.: On conjectures of Mahowald, Segal and Sullivan. Math. Proc. Camb. Philos. Soc. 87(3), 449–458 (1980). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lin, W.H., Davis, D.M., Mahowald, M.E., Adams, J.F.: Calculation of Lin’s Ext groups. Math. Proc. Camb. Philos. Soc. 87(3), 459–469 (1980). MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lurie, J.: Survey Article on Elliptic Cohomology. (2007)
  11. 11.
    Mahowald, M.: \(b{\rm o}\)-resolutions. Pac. J. Math. 92(2), 365–383 (1981).
  12. 12.
    Mahowald, M., Hopkins, M.: From Elliptic Curves to Homotopy Theory. (1998)
  13. 13.
    Mahowald, M., Shick, P.: Root invariants and periodicity in stable homotopy theory. Bull. Lond. Math. Soc. 20(3), 262–266 (1988). MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mahowald, M.E., Ravenel, D.C.: Toward a global understanding of the homotopy groups of spheres. In: The Lefschetz Centennial Conference, Part II (Mexico City, 1984). Contemporary Mathematics, vol. 58, pp. 57–74. American Mathematical Society, Providence, RI (1987)Google Scholar
  15. 15.
    Mathew, A.: The Homology of tmf. arXiv:1305.6100 (2013)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsClayton State UniversityMorrowUSA
  2. 2.Department of MathematicsWayne State UniversityDetroitUSA

Personalised recommendations