Advertisement

Mathematische Zeitschrift

, Volume 291, Issue 3–4, pp 1211–1244 | Cite as

An arithmetic Bernštein–Kušnirenko inequality

  • César Martínez
  • Martín SombraEmail author
Article

Abstract

We present an upper bound for the height of the isolated zeros in the torus of a system of Laurent polynomials over an adelic field satisfying the product formula. This upper bound is expressed in terms of the mixed integrals of the local roof functions associated to the chosen height function and to the system of Laurent polynomials. We also show that this bound is close to optimal in some families of examples. This result is an arithmetic analogue of the classical Bernštein–Kušnirenko theorem. Its proof is based on arithmetic intersection theory on toric varieties.

Keywords

Height of points Laurent polynomials Mixed integrals Toric varieties \({\varvec{u}}\)-Resultants 

Mathematics Subject Classification

Primary 14G40 Secondary 14C17 14M25 52A41 

Notes

Acknowledgements

We thank José Ignacio Burgos, Roberto Gualdi and Patrice Philippon for useful discussions. We also thank Walter Gubler, Philipp Habegger and the referee for their helpful comments and suggestions for improvement on a previous version of this paper. Part of this work was done while the authors met at the Universitat de Barcelona and at the Université de Caen. We thank both institutions for their hospitality.

References

  1. 1.
    Artin, E., Whaples, G.: Axiomatic characterization of fields by the product formula for valuations. Bull. Amer. Math. Soc. 51, 469–492 (1945)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bernstein, D.N.: The number of roots of a system of equations. Funkcional. Anal. i Priložen. 9, 1–4 (1975). (English translation: Functional Anal. Appl. 9, 183–185, (1975)) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bombieri, E., Gubler, W.: Heights in diophantine geometry, New Math. Monogr., vol. 4. Cambridge Univ. Press, Cambridge (2006)zbMATHGoogle Scholar
  4. 4.
    Burgos Gil, J.I., Moriwaki, A., Philippon, P., Sombra, M.: Arithmetic positivity on toric varieties. J. Algebraic Geom. 25, 201–272 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bourbaki, N.: Éléments de mathématique. Fasc. XXX. Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations. (French) Actualitès Scientifiques et Industrielles, No. 1308 Hermann, Paris (1964)Google Scholar
  6. 6.
    Bourbaki, N.: Éléments de mathématique. Algèbre. Chapitres 1 à 3. (French) Hermann, Paris (1970)Google Scholar
  7. 7.
    Burgos Gil, J.I., Philippon, P., Rivera-Letelier, J., Sombra, M.: The distribution of Galois orbits of points of small height in toric varieties, e-print arXiv:1509.01011v1 (2015)
  8. 8.
    Burgos Gil, J.I., Philippon, P., Sombra, M.: Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque, vol. 360. Société Mathématique de France, Paris (2014)Google Scholar
  9. 9.
    Burgos Gil, J.I., Philippon, P., Sombra, M.: Successive minima of toric height functions. Ann. Inst. Fourier (Grenoble) 65, 2145–2197 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cassels, J.W.S.: Local fields, London Math. Soc. Stud. Texts, vol. 3. Cambridge Univ. Press, Cambridge (1986)Google Scholar
  11. 11.
    Chambert-Loir, A.: Mesures et équidistribution sur les espaces de Berkovich. J. Reine Angew. Math. 595, 215–235 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Fulton, W.: Intersection theory, Ergeb. Math. Grenzgeb. (3), vol. 2. Springer-Verlag, Berlin (1984)CrossRefGoogle Scholar
  13. 13.
    Fulton, W.: Introduction to toric varieties, Ann. of Math. Stud., vol. 131. Princeton Univ. Press, Princeton (1993)Google Scholar
  14. 14.
    Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, resultants, and multidimensional determinants. In: Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston (1994)Google Scholar
  15. 15.
    Gubler, W.: Heights of subvarieties over \(M\)-fields, arithmetic geometry (Cortona, 1994), sympos. math., pp. 190–227. Cambridge Univ. Press, Cambridge (1997)zbMATHGoogle Scholar
  16. 16.
    Heath-Brown, D.R.: Diophantine approximation with square-free numbers. Math. Z. 187, 335–344 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kušnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lang, S.: Algebra. Revised third edition. In: Graduate Texts in Mathematics, vol. 211. Springer, New York (2002)Google Scholar
  19. 19.
    Lazarsfeld, R.: Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergeb. Math. Grenzgeb. (3), vol. 48. Springer-Verlag, Berlin (2004)CrossRefGoogle Scholar
  20. 20.
    Maillot, V.: Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables. In: Mémoires de la Société Mathématique de France, vol. 80, pp. III1–VI129 (2000)Google Scholar
  21. 21.
    Philippon, P., Sombra, M.: A refinement of the Bernštein–Kušnirenko estimate. Adv. Math. 218, 1370–1418 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Schneider, R.: Convex bodies: the Brunn-Minkowski theory, Encyclopedia Math. Appl., vol. 44. Cambridge Univ. Press, Cambridge (1993)CrossRefGoogle Scholar
  23. 23.
    Sombra, M.: Minimums successifs des variétés toriques projectives. J. Reine Angew. Math. 586, 207–233 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sturmfels, B.: Solving systems of polynomial equations. In: CBMS Regional Conference Series in Mathematics, 97. Published for the Conference Board of the Mathematical Sciences, Washington. American Mathematical Society, Providence (2002)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de mathématiques Nicolas Oresme, CNRS UMR 6139Université de CaenCaen CedexFrance
  2. 2.ICREABarcelonaSpain
  3. 3.Departament de Matemàtiques i InformàticaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Fakultät für MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations