Mathematische Zeitschrift

, Volume 291, Issue 3–4, pp 761–819 | Cite as

Cheeger–Müller theorem on manifolds with cusps

  • Boris VertmanEmail author


We prove equality between the renormalized Ray–Singer analytic torsion and the intersection R-torsion on a Witt-manifold with cusps, up to an error term determined explicitly by the Betti numbers of the cross section of the cusp and the intersection R-torsion of a model cone. In the first step of the proof we compute explicitly the renormalized Ray–Singer analytic torsion of a model cusp in general dimension and without the Witt-condition. In the second step we establish a gluing formula for renormalized Ray–Singer analytic torsion on a general class of non-compact manifolds in any dimension that includes Witt-manifolds with cusps, but also scattering manifolds with asymptotically conical ends. In the final step, a Cheeger–Müller theorem on cusps follows by a combination of the previous explicit computation and the gluing formula.

Mathematics Subject Classification

58J52 34B24 



I thank Werner Müller for suggesting the topic and encouragement, Jonathan Pfaff, Matthias Lesch, Xianzhe Dai, Ulrich Bunke and Frederik Rochon for helpful discussions. I am grateful to Luiz Hartmann for careful reading of the manuscript and the explicit computations on the model cusp. I greatly appreciate the careful reading and valuable improvements suggested by the anonymous referee. I thank the Hausdorff Center for Mathematics in Bonn and University Münster for hospitality and financial support.


  1. 1.
    Abramowitz, M., Stegun, I.A. (eds.).: Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications Inc., New York (1992) (Reprint of the 1972 edition) Google Scholar
  2. 2.
    Albin, P., Rochon, F., Sher, D.: Resolvent, Heat Kernel and Torsion Under Degeneration to Fibered Cusps (2014). arXiv:1410.8406 [math.DG]
  3. 3.
    Albin, P., Rochon, F., Sher, D.: Analytic Torsion and R-torsion of Witt Representations on Manifolds with Cusps (2014). arXiv:1411.1105 [math.DG]
  4. 4.
    Barlow, M.T., Bass, R.F.: Brownian motion and harmonic analysis on Sierpinski carpets. Can. J. Math. 54, 673–744 (1999)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bismut, J.-M., Zhang, W.: An extension of a theorem by Cheeger and Müller, Asterisque, vol. 205 (1992)Google Scholar
  6. 6.
    Brüning, J., Lesch, M.: Hilbert complexes. J. Funct. Anal. 108(1), 88–132 (1992)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Brüning, J., Ma, X.: An anomaly-formula for Ray-Singer metrics on manifolds with boundary. Geom. Funct. Anal. 16(4), 767–837 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Burghelea, D., Friedlander, L., Kappeler, T.: On the determinant of elliptic boundary value problems on a line segment. Proc. Am. Math. Soc. 123(10), 3027–3038 (1995)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Chavel, I., Karp, L.: Large time behavior of the heat kernel: the parabolic \(\lambda \)-potential alternative. Comment. Math. Helv. 66(4), 541–556 (1991)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cheeger, J.: Analytic torsion and the heat equation. Ann. Math. (2) 109(2), 259–322 (1979)Google Scholar
  11. 11.
    Cheng, S.Y., Li, P., Yau, S.T.: On the upper estimate of the heat kernel of a complete Riemannian manifold. Am. J. Math. 103(5), 1021–1063 (1981)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Dai, X., Huang, X.: The Intersection R-Torsion of a Finite Cone. (2010)
  13. 13.
    Dar, A.: Intersection R-torsion and analytic torsion for pseudo-manifolds. Math. Z. 194, 193–216 (1987)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Davies, E.B.: Gaussian upper bounds for the heat kernel of some second-order operators on Riemannian manifolds. J. Funct. Anal. 80, 16–32 (1988)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Davies, E.B.: Pointwise bounds on the space and time derivatives of heat kernels. J. Oper. Theory 21(2), 367–378 (1989)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Donnelly, H.: Spectral geometry for certain noncompact Riemannian manifolds. Math. Z. 169(1), 63–76 (1979)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Derezinski, J.: Operators on \(L^2({\mathbb{R}}^d)\), Lecture Notes. (2007)
  18. 18.
    Franz, W.: Über die Torsion einer Überdeckung. J. Reine Angew. Math. 173, 245–254 (1935)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19(2), 135–162 (1980)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Goresky, M., MacPherson, R.: Intersection homology. II. Invent. Math. 72(1), 77–129 (1983)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Grieser, D.: Basics of the \(b\)-calculus. Approaches to singular analysis (Berlin, 1999). Oper. Theory Adv. Appl. 125, 30–84 (2001)zbMATHGoogle Scholar
  22. 22.
    Grigoryan, A., Telcs, A.: Sub-Gaussian estimates of heat kernels on infinite graphs. Duke Math. J. 109(3), 451–510 (2001)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Guillarmou, C., Sher, D.A.: Low Energy Resolvent for the Hodge Laplacian: Applications to Riesz Transform, Sobolev Estimates and Analytic Torsion. arXiv:1310.4694 [math.AP] (2013)
  24. 24.
    Hartmann, L., Spreafico, M.: The analytic torsion of the cone over an odd dimensional manifold. J. Geom. Phys. 61 (3)524-657 (2011) we use references from the preprint version. arXiv:1001.4755 [math.DG]
  25. 25.
    Hartmann , L., Spreafico, M.: On the Cheeger-Müller theorem on an even-dimensional cone. St. Petersburg Math. J. (2014). arXiv:1008.2987 [math.DG]
  26. 26.
    Hassell, A.: Analytic surgery and analytic torsion. Commun. Anal. Geom. 6(2), 255–289 (1998)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Hausel, T., Hunsicker, E., Mazzeo, R.: Hodge cohomology of gravitational instantons. Duke 122, 485–548 (2004)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Lax, P.R.: Phillips Scattering Theory for Automorphic Functions. Ann. Math. Studies 87. Princeton Univ. Press, New Jersey (1976)Google Scholar
  29. 29.
    Hartmann, L., Lesch, M., Vertman, B.: Zeta determinants of Sturm-Liouville operators with quadratic potentials at infinity. J. Diff. Equ. 262(5), 3431–3465 (2017)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Levit, S., Smilanski, U.: A theorem on infinite products of eigenvalues of Sturm Liouville type operators. Proc. Am. Math. Soc. 65, 299–302 (1977)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Li, P.P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)MathSciNetGoogle Scholar
  32. 32.
    Lück, W.: Analytic and topological torsion for manifolds with boundary and symmetry. J. Differ. Geom. 37, 263–322 (1993)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Lesch, M.: Operators of Fuchs type, conical singularities and asymptotic methods, Teubner Texte zur Mathematik Vol. 136, Teubner, Leipzig (1997). arXiv:dg-ga/9607005
  34. 34.
    Lesch, M.: Determinants of regular singular Sturm-Liouville operators. Math. Nachr. 194, 139–170 (1998)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Lesch, M.: Gluing formula for analytic torsion. Anal. PDE 6(1), 221–256 (2012)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Mazzeo, R.: Elliptic theory of differential edge operators. I. Commun. Partial Differ. Equ. 16(10), 1615–1664 (1991)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Mazzeo, R., Vertman, B.: Analytic torsion on manifolds with edges. Adv. Math. 231(2), 1000–1040 (2012)MathSciNetzbMATHGoogle Scholar
  38. 38.
    de Melo, T., Hartmann, L., Spreafico, M.: Reidemeister torsion and analytic torsion of discs. Boll. Unione Mat. Ital. (9) 2(2), 529–533(2009)Google Scholar
  39. 39.
    Melrose, R.B.: Calculus of conormal distributions on manifolds with corners. Int. Math. Res. Not. 3, 51–61 (1992)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Melrose, R.B.: The Atiyah-Patodi-Singer Index Theorem. Research Notes in Math, vol. 4. A K Peters, Massachusetts (1993)zbMATHGoogle Scholar
  41. 41.
    Milnor, J.: Whitehead torsion. Bull. Am. Math. Soc 72, 358–426 (1966)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Müller, W.: Analytic torsion and R-torsion of Riemannian manifolds. Adv. Math. 28, 233–305 (1978)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Müller, W.: Spectral theory for Riemannian manifolds with cusps and a related trace formula. Math. Nachr. 111, 197–288 (1983)MathSciNetGoogle Scholar
  44. 44.
    Müller, W.: Relative zeta functions, relative determinants and scattering theory. Commun. Math. Phys. 192(2), 309–347 (1998)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Müller, W., Pfaff, J.: The analytic torsion and its asymptotic behaviour for sequences of hyperbolic manifolds of finite volume. J. Funct. Anal. 267(8), 2731–2786 (2014)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Müller, W., Pfaff, J.: On the growth of torsion in the cohomology of arithmetic groups. Math. Ann. 359(1–2), 537–555 (2014)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Müller, W., Vertman, B.: The metric anomaly of analytic torsion on manifolds with conical singularities. Commun. PDE 39, 1–46 (2014)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Nicolaescu, L.: The Reidemeister torsion of 3-manifolds. de Gruyter, Berlin (2003)zbMATHGoogle Scholar
  49. 49.
    Olver, F.W.J.: The asymptotic expansion of Bessel functions of large order. Philos. Trans. Royal Soc. Lond. Ser. A Math. Phys. Sci. 247(930), 328–368 (1954)Google Scholar
  50. 50.
    Olver, F.W.J.: Asymptotics and Special Functions, AKP Classics. A K Peters Ltd., Wellesley (1997) (Reprint of the 1974 original [Academic Press, New York]) Google Scholar
  51. 51.
    Paquet, L.: Problèmes mixtes pour le système de Maxwell. Ann. Fac. Sci. Toulouse Math. (5) 4(2), 103–141 (1982)Google Scholar
  52. 52.
    Pfaff, J.: Analytic torsion versus Reidemeister torsion on hyperbolic 3-manifolds with cusps. Math. Z. 277(3–4), 953–974 (2014)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Pfaff, J.: A Gluing Formula for the Analytic Torsion on Hyperbolic Manifolds with Cusps. arXiv:1312.6384 [math.SP] (2013)
  54. 54.
    Ray, D.B., Singer, I.M.: R-torsion and the Laplacian on Riemannian manifolds. Adv. Math. 7, 145–210 (1971)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics III. Scattering Theory. Acad. Press, New York (1979)zbMATHGoogle Scholar
  56. 56.
    Reidemeister, K.: Die Klassifikation der Linsenräume. Abhandl. Math. Sem. Hamburg 11, 102–109 (1935)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Reidemeister, K.: Überdeckungen von Komplexen. J. Reine Angew. Math. 173, 164–173 (1935)MathSciNetzbMATHGoogle Scholar
  58. 58.
    de Rham, G.: Complexes a automorphismes et homeomorphie differentiable. Ann. Inst. Fourier 2, 51–67 (1950)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Sher, D.A.: The heat kernel on an asymptotically conic manifold. arXiv:1208.1808 (2013)
  60. 60.
    Shubin, M.A.: Pseudodifferential Operators and Spectral Theory, Translated from the 1978 Russian original by Stig I. Andersson., 2nd edn. Springer, Berlin (2001)zbMATHGoogle Scholar
  61. 61.
    Shubin, M.A.: Von Neumann algebras and \(L^{\text{2}}\) Techniques in Geometry and Topology.
  62. 62.
    Sidi, A., Hoggan, P.E.: Asymptotics of modified Bessel functions of high order. Int. J. Pure Appl. Math. 71(3), 481–498 (2011)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Simon, B.: Large time behavior of the heat kernel: on a theorem of Chavel and Karp. Proc. Am. Math. Soc. 118(2), 513–514 (1993)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Spreafico, M.: Zeta function and regularized determinant on a disc and on a cone. J. Geom. Phys. 54(3), 355–371 (2005)MathSciNetzbMATHGoogle Scholar
  65. 65.
    Spreafico, M.: Zeta invariants for double sequences of spectral type. Proc. Am. Math. Soc. 140, 1881–1896 (2012)zbMATHGoogle Scholar
  66. 66.
    Vaillant, B.: Index and Spectral Theory for Manifolds with Generalized Fibred Cusps, Doctoral Thesis. arXiv:math/0102072 [math.DG] (2001)
  67. 67.
    Vertman, B.: The Analytic Torsion on Manifolds with Boundary and Conical Singularities, Dissertation (2008)Google Scholar
  68. 68.
    Vertman, B.: Analytic torsion of a bounded generalized cone. Commun. Math. Phys. 290(3), 813–860 (2009)MathSciNetzbMATHGoogle Scholar
  69. 69.
    Vishik, S.: Generalized Ray-Singer Conjecture I. A manifold with smooth boundary. Commun. Math. Phys. 167, 1–102 (1995)MathSciNetzbMATHGoogle Scholar
  70. 70.
    Watson, G.N.: A treatise on the theory of Bessel functions, 2nd edn. Cambridge Univ. Press, Cambridge (1966)zbMATHGoogle Scholar
  71. 71.
    Whitehead, J.H.: Simple homotopy types. Am. J. Math. 72, 1–57 (1950)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Carl von Ossietzky Universität Oldenburg, Institut für MathematikOldenburgGermany

Personalised recommendations