Mathematische Zeitschrift

, Volume 291, Issue 1–2, pp 569–589 | Cite as

On the rigidity of Riemannian–Penrose inequality for asymptotically flat 3-manifolds with corners

  • Yuguang ShiEmail author
  • Wenlong Wang
  • Haobin Yu


In this paper we prove a rigidity result for the equality case of the Penrose inequality on 3-dimensional asymptotically flat manifolds with nonnegative scalar curvature and corners. Our result also has deep connections with the equality cases of Theorem 1 in Miao (Commun Math Phys 292(1):271–284, 2009) and Theorem 1.1 in Lu and Miao (Minimal hypersurfaces and boundary behavior of compact manifolds with nonnegative scalar curvature, arXiv:1703.08164v2, 2017).


Penrose inequality Asymptotically flat manifold with corner Stable CMC surfaces 

Mathematics Subject Classification

Primary 53C20 Secondary 83C99 


  1. 1.
    Andersson, L., Cai, M., Galloway, G.J.: Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann. Henri Poincaré 9(1), 1–33 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnowitt, R., Deser, S., Misner, C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122(3), 997–1006 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Biquard, O.: Continuation unique à partir de l’infini conforme pour les métriques d’Einstein. Math. Res. Lett. 15(6), 1091–1099 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bray H.: The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature. Ph.D. thesis, Stanford University (1997). arXiv:0902.3241
  5. 5.
    Bray, H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59(2), 177–267 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bray, H., Lee, D.: On the Riemannian Penrose inequality in dimensions less than eight. Duke Math. J. 148(1), 81–106 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chrúsciel, P., Delay, E.: Unique continuation and extensions of Killing vectors at boundaries for stationary vacuum space-times. J. Geom. Phys. 61(8), 1249–1257 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Comm. Math. Phys. 214(1), 137–189 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, P.-N., Zhang, X.: Rigidity theorem for surfaces in Schwarzschild manifold. arXiv:1802.00887
  10. 10.
    Eichmair, M., Metzger, J.: Large isoperimetric surfaces in initial data sets. J. Differ. Geom. 94, 159–186 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gilbarg, G., Trudinger, N.: Elliptic partial differential equations of second order. Springer, Berlin (1983)CrossRefzbMATHGoogle Scholar
  12. 12.
    Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3), 353–437 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lu, S.Y., Miao, P.Z.: Minimal hypersurfaces and boundary behavior of compact manifolds with nonnegative scalar curvature (2017). arXiv:1703.08164v2
  14. 14.
    Lu, S.Y., Miao, P.Z.: Variational and rigidity of quasi-local mass. arXiv:1802.10070v2
  15. 15.
    Mccormick, S., Miao, P.Z.: On a Penrose-like inequality in dimensions less than eight. arXiv:1701.04805
  16. 16.
    McFeron, D., Székelyhidi, G.: On the positive mass theorem for manifolds with corners. Comm. Math. Phys. 313(2), 425–443 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Meeks, W., Yau, S.T.: Topology of three-dimensional manifolds and the embedding problems in minimal surface theory. Ann. of Math. (2) 112(3), 441–484 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Miao, P.Z.: Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6, 1163–1182 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Miao, P.Z.: On a localized Riemannian Penrose inequality. Comm. Math. Phys. 292(1), 271–284 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schoen, R., Yau, S.T.: On the proof of the positive mass conjecture in general relativity. Comm. Math. Phys. 65(1), 45–76 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Shi, Y.G., Tam, L.F.: Scalar curvature and singular metrics. Pacific J. Math. 293(2), 427–470 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Simon, L.: Lectures on Geometric Measure Theory. In: Proceedings of the centre for mathematical analysis, ANU, vol. 3 (1983)Google Scholar
  23. 23.
    Wolter, F.-E.: Distance function and cut loci on a complete Riemannian manifold. Arch. Math. (Basel) 32(1), 92–96 (1979)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Pure and Applied Mathematics, School of Mathematical SciencesPeking UniversityBeijingPeople’s Republic of China
  2. 2.Department of MathematicsHangzhou Normal UniversityHangzhouPeople’s Republic of China

Personalised recommendations