Mathematische Zeitschrift

, Volume 291, Issue 1–2, pp 449–471 | Cite as

On multiplicity in restriction of tempered representations of p-adic groups

  • Kwangho ChoiyEmail author


We establish an equality between two multiplicities: one in the restriction of tempered representations of a p-adic group to its closed subgroup with the same derived group; and one occurring in their corresponding component groups in Langlands dual sides, so-called \(\mathcal {S}\)-groups, under working hypotheses about the tempered local Langlands conjecture and the internal structure of tempered L-packets. This provides a formula of the multiplicity for p-adic groups by means of dimensions of irreducible representations of their \(\mathcal {S}\)-groups.


Multiplicity in the restriction Local Langlands conjecture Internal structure of L-packet Tempered representation 

Mathematics Subject Classification

Primary 11F70 Secondary 22E50 22E35 



The author would like to express his great appreciation to Tasho Kaletha for his insightful comments and fruitful discussions on this work. He is also grateful to Jeff Adler, Wee Teck Gan, Wen-Wei Li, Dipendra Prasad, and Mark Reeder for their valuable suggestions and helpful communications. The author wishes to thank the referee for a careful reading and many valuable comments and suggestions that have led to improvements in the manuscript. This work was partially done during his visit at Max-Planck-Institut für Mathematik, Bonn in June and July 2016. The author thanks the institute for their generous support and stimulating research environment.


  1. 1.
    Adler, J.D., Prasad, D.: On certain multiplicity one theorems. Israel J. Math. 153, 221–245 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arthur, J.: A note on $L$-packets, Pure Appl. Math. Q. 2(1), Special Issue: In honor of John H. Coates. Part 1, 199–217 (2006)Google Scholar
  3. 3.
    Arthur, J.: The endoscopic classification of representations. American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, Orthogonal and symplectic group (2013)Google Scholar
  4. 4.
    Asgari, M., Choiy, K.: The local Langlands conjecture for $p$-adic $\text{ GSpin }_4$, $\text{ GSpin }_6$, and their inner forms. Forum Math. 29(6), 1261–1290 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Aubert, A.-M., Baum, P., Plymen, R., Solleveld, M.: The local Langlands correspondence for inner forms of ${\rm SL}_{\rm n}$. Res. Math. Sci. 3(32), 34 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ban, D., Choiy, K., Goldberg, D.: ${\rm R}$-group and multiplicity in restriction for unitary principal series of ${\rm GSpin}$ and ${\rm Spin}$, GANITA, Springer Proceedings in Mathematics & Statistics, in honour of Professor Kumar Murty’s 60th Birthday, to appear (2018)Google Scholar
  7. 7.
    Ban, D., Choiy, K., Goldberg, D.: ${\rm R}$-groups for unitary principal series of ${\rm Spin}$ groups, In preparation (2018)Google Scholar
  8. 8.
    Borel, A.: Automorphic L-Functions. In: Proceedings of Symposia in Pure Mathematics, vol. 33, Part 2, pp. 27–61. American Mathematical Society, Providence, RI (1979)Google Scholar
  9. 9.
    Chao, K.F., Li, W.-W.: Dual $R$-groups of the inner forms of SL (N). Pacific J. Math. 267(1), 35–90 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Choiy, K.: The local Langlands conjecture for the p-adic inner form of ${\rm Sp}(4)$. Int. Math. Res. Not. 2017(6), 1830 (2017)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Choiy, K., Goldberg, D.: Transfer of $R$-groups between $p$-adic inner forms of ${\rm SL}_{\rm n}$. Manuscripta Math. 146(1–2), 125–152 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gan, W.T., Takeda, S.: The local Langlands conjecture for Sp(4). Int. Math. Res. Not. IMRN 15, 2987–3038 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gelbart, S.S., Knapp, A.W.: $L$-indistinguishability and $R$ groups for the special linear group. Adv. in Math. 43(2), 101–121 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Harris, M., Taylor, R.: The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001, With an appendix by Vladimir G. BerkovichGoogle Scholar
  15. 15.
    Henniart, G.: Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. Invent. Math. 139(2), 439–455 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hiraga, K., Saito, H.: On $L$-packets for inner forms of ${\rm SL}_{\rm n}$, Mem. Amer. Math. Soc. 215(1013) (2012)Google Scholar
  17. 17.
    James, G., Liebeck, M.: Representations and characters of groups, 2nd edn. Cambridge University Press, New York (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kaletha, T.: Genericity and contragredience in the local Langlands correspondence. Algebra Number Theory 7(10), 2447–2474 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kaletha, T.: Epipelagic $L$-packets and rectifying characters. Invent. Math. 202(1), 1–89 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kaletha, T.: The local Langlands conjectures for non-quasi-split groups, pp. 217–257. Simons Symposia, Springer, Families of Automorphic Forms and the Trace Formula (2016)Google Scholar
  21. 21.
    Kaletha, T.: Rigid inner forms of real and $p$-adic groups. Ann. of Math. (2) 184(2), 559–632 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kaletha, T.: Global rigid inner forms and multiplicities of discrete automorphic representations, Invent. Math., to appear (2018)Google Scholar
  23. 23.
    Karpuk, D.A.: Cohomology of the Weil group of a $p$-adic field. J. Number Theory 133(4), 1270–1288 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Keys, C.D.: L-indistinguishability and R-groups for quasisplit groups: unitary groups in even dimension. Ann. Sci. École Norm. Sup. (4) 20(1), 31–64 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Konno, T.: A note on the Langlands classification and irreducibility of induced representations of $p$-adic groups. Kyushu J. Math. 57(2), 383–409 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kottwitz, R.E.: Stable trace formula: cuspidal tempered terms. Duke Math. J. 51(3), 611–650 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kottwitz, R.E.: Stable trace formula: elliptic singular terms. Math. Ann. 275(3), 365–399 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kottwitz, R.E.: Isocrystals with additional structure. II. Compositio Math. 109(3), 255–339 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Labesse, J.-P., Langlands, R.P.: $L$-indistinguishability for SL(2). Can. J. Math. 31(4), 726–785 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Labesse, J.-P.: Cohomologie, $L$-groupes et fonctorialité. Compositio Math. 55(2), 163–184 (1985)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Langlands, R.P.: Representations of abelian algebraic groups, Pacific J. Math. no. Special Issue, 231–250, Olga Taussky-Todd: in memoriam (1997)Google Scholar
  32. 32.
    Platonov, V., Rapinchuk, A.: Algebraic groups and number theory, pure and applied mathematics, vol. 139. Academic Press Inc., Boston (1994)zbMATHGoogle Scholar
  33. 33.
    Rodier, F.: Sur le caractère de Steinberg. Compositio Math. 59(2), 147–149 (1986)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Rotman, J.J.: An introduction to homological algebra, second ed., Universitext, Springer, New York (2009)Google Scholar
  35. 35.
    Scholze, P.: The local Langlands correspondence for $\rm {GL}_{\rm n}$ over $p$-adic fields. Invent. Math. 192(3), 663–715 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Shahidi, F.: A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups. Ann. of Math. (2) 132(2), 273–330 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Shahidi, F.: Eisenstein series and automorphic \(L\)-functions, American Mathematical Society Colloquium Publications, vol. 58, American Mathematical Society, Providence, RI (2010)Google Scholar
  38. 38.
    Shelstad, D.: Notes on $L$-indistinguishability (based on a lecture of R. P. Langlands), Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Am. Math. Soc., Providence, R.I., pp. 193–203 (1979)Google Scholar
  39. 39.
    Tadić, M.: Notes on representations of non-Archimedean SL(n). Pac. J. Math. 152(2), 375–396 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Xu, B.: On a lifting problem of L-packets. Compos. Math. 152(9), 1800–1850 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Yu, J.-K.: On the local Langlands correspondence for tori, Ottawa lectures on admissible representations of reductive $p$-adic groups, Fields Inst. Monogr., vol. 26, Am. Math. Soc., Providence, RI, pp. 177–183 (2009)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsSouthern Illinois UniversityCarbondaleUSA

Personalised recommendations