Advertisement

Mathematische Zeitschrift

, Volume 291, Issue 1–2, pp 215–225 | Cite as

Existence of either a periodic collisional orbit or infinitely many consecutive collision orbits in the planar circular restricted three-body problem

  • Urs FrauenfelderEmail author
  • Lei Zhao
Article
  • 96 Downloads

Abstract

In the restricted three-body problem, consecutive collision orbits are those orbits which start and end at collisions with one of the primaries. Interests for such orbits arise not only from mathematics but also from various engineering problems. In this article, using Floer homology, we show that there is either a periodic collisional orbit, or there are infinitely many consecutive collision orbits in the planar circular restricted three-body problem on each bounded component of the energy hypersurface for Jacobi energy below the first critical value.

Notes

Acknowledgements

Urs Frauenfelder is partially supported by the grant DFG FR/2637/2-1 funded by the Deutsche Forschungsgemeinschaft (DFG) and Lei Zhao is supported by the grants DFG FR/2637/2-1 and DFG ZH 605/1-1.

References

  1. 1.
    Albers, P., Frauenfelder, U.: Spectral invariants in Rabinowitz–Floer homology and global Hamiltonian perturbations. J. Mod. Dyn. 4(2), 329–357 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Albers, P., Frauenfelder, U., van Koert, O., Paternain, G.: Contact geometry of the restricted three-body problem. Commun. Pure Appl. Math. 65(2), 229–263 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Birkhoff, G.: The restricted problem of three bodies. Rend. Circ. Matem. Palermo 39, 265–334 (1915)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cieliebak, K., Frauenfelder, U.: A Floer homology for exact contact embeddings. Pac. J. Math. 239(2), 216–251 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cieliebak, K., Frauenfelder, U., van Koert, O.: Periodic orbits in the restricted three-body problem and Arnold’s \(J^{+}\)-invariant. Regul. Chaotic Dyn. 22(4), 408–434 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Curtis, H.: Orbital Mechanics for Engineering Students, third edition edn. Elsevier, Oxford (2014)Google Scholar
  7. 7.
    Hénon, M.: Sur les orbites interplanètaire qui rencontrent deux fois la terre. Bull. Astron. 3(3), 377–402 (1968)zbMATHGoogle Scholar
  8. 8.
    Kang, J.: Survival of infinitely many critical points for the Rabinowitz action functional. J. Mod. Dyn. 4(4), 733–739 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lee, J.: Fiberwise convexity of Hill’s lunar problem (2016). arXiv:1411.7573 (preprint)
  10. 10.
    Merry, W.: Lagrangian Rabinowitz Floer homology and twisted cotangent bundles. Geom. Dedicata 171, 345–386 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Marchal, C.: How the method of minimization of action avoids singularities. Celest. Mech. Dyn. Astron. 83, 325–353 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    McDuff, D., Salamon, D.: J-holomorphic Curves and Symplectic Topology, 2nd edn. Amer. Math. Soc, Providence (2012)zbMATHGoogle Scholar
  13. 13.
    Moser, J.: Regularization of Kepler’s problem and the averaging method on a manifold. Commun. Pure Appl. Math. 23, 609–636 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Oberth, H.: Wege zur Raumschiffahrt. R. Oldenbourg, Munich (1929)Google Scholar
  15. 15.
    Robinson, C.: Generic properties of conservative systems. Am. J. Math. 92(3), 562–603 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Santos, D., Prado, A.: Consecutive Collision Orbits to Obtain EGA Maneuvers. In: WSEAS International Systems Theory and Scientific Computation, vol. 12, pp. 142–149, Istanbul (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of AugsburgAugsburgGermany

Personalised recommendations