Mathematische Zeitschrift

, Volume 291, Issue 1–2, pp 17–46 | Cite as

Generalized metrics and generalized twistor spaces

  • Johann DavidovEmail author


The twistor construction for Riemannian manifolds is extended to the case of manifolds endowed with generalized metrics (in the sense of generalized geometry à la Hitchin). The generalized twistor space associated to such a manifold is defined as the bundle of generalized complex structures on the tangent spaces of the manifold compatible with the given generalized metric. This space admits natural generalized almost complex structures whose integrability conditions are found in the paper. An interesting feature of the generalized twistor spaces discussed in it is the existence of intrinsic isomorphisms.


Generalized complex structures Twistor spaces 

Mathematics Subject Classification

53D18 53C28 



I would like to thank the referee whose remarks and comments helped to improve the final version of the paper.


  1. 1.
    Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc. Lond, Ser. A 362, 425–461 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Besse, A.: Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete 3.Folge, Band, vol. 10. Springer, Berlin, Heidelberg, New York (1987)Google Scholar
  3. 3.
    Bredthauer, A.: Generalized hyper-Kähler geometry and supersymmetry. Nuclear Phys. B 773, 172–183 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cavalcanti, G.: New aspects of the \(dd^c\)-lemma, Ph.D. thesis, New College, University of Oxford (2004). arXiv:math.DG/0501406
  5. 5.
    Cavalcanti, G., Gualtieri, M.: Generalized complex structures on nilmanifolds. J. Symplectic Geom. 2, 393–410 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cavalcanti, G., Gualtieri, M.: Blow-up of generalized complex \(4\)-manifolds. J. Topol. 2, 840–864 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cavalcanti, G., Gualtieri, M.: Blowing up generalized Kähler 4-manifolds. Bull. Braz. Math. Soc. (N.S.) 42, 537–557 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Courant, T.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Davidov, J., Mushkarov, O.: Twistor spaces of generalized complex structures. J. Geom. Phys. 56, 1623–1636 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Davidov, J., Mushkarov, O.: Twistorial construction of generalized Kähler manifolds. J. Geom. Phys. 57, 889–901 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Deschamps, G.: Espace de twisteurs des structures complexes généralisées. Math. Z. 279, 703–721 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gromol, D., Klingenberg, W., Meyer, W.: Riemannsche Geometrie in Grossen, Lecture Notes in Mathematics, vol. 55. Springer, New York (1968)Google Scholar
  13. 13.
    Eells, J., Salamon, S.: Twistorial constructions of harmonic maps of surfaces into four-manifolds. Ann. Scuola Norm. Sup. Pisa, ser. IV 12, 89–640 (1985)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Glover, R., Sawon, J.: Generalized twistor spaces for hyperkähler manifolds. J. Lond. Math. Soc. 91, 321–324 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gualtieri, M.: Generalized complex geometry, Ph.D. thesis, St John’s College, University of Oxford (2003). arXiv:math.DG/0401221
  16. 16.
    Gualtieri, M.: Generalized complex geometry. Ann. Math. 174, 75–123 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gualtieri, M.: Generalized Kähler geometry. Commun. Math. Phys. 331, 297–331 (2014)CrossRefzbMATHGoogle Scholar
  18. 18.
    Hitchin, N.: Compact four-dimensional Einstein manifolds. J. Differ. Geom. 9, 435–441 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hitchin, N.: Generalized Calabi–Yau manifolds. Q. J. Math. 54, 281–308 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hitchin, N.: Instantons, Poisson structures and generalized Kähler geometry. Commun. Math. Phys. 265, 131–164 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Hitchin, N.: Brackets, forms and invariant functionals. Asian J. Math. 10, 541–560 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hitchin, N.: Generalized geometry - an introduction, In: Cortes, V. (ed.) Handbook of pseudo-Riemannian geometry and suppersymmetry, IRMA Lectures in Mathematics and Theoretical Physics, vol. 16, pp. 185–208. European Mathematical Society, Zürich (2010)Google Scholar
  23. 23.
    Pentilie, R.: Generalized quaternionic manifolds. Ann. Mat. Pura Appl. (4) 193, 633–641 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Penrose, R.: Twistor theory, its aims and achievements. In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Quantum gravity, an Oxford Symposium, pp. 268–407. Clarendon Press, Oxford (1975)Google Scholar
  25. 25.
    Penrose, R., Ward, R.S.: Twistors for flat and curved space-time. In: Held, A. (ed.) General Relativity and Gravitation, vol. 2, pp. 283–328. Plenum Press, New York, London (1980)Google Scholar
  26. 26.
    Willmore, T.J.: Riemannian geometry. Clarendon Press, Oxford (1993)zbMATHGoogle Scholar
  27. 27.
    Witt, F.: Special metric structures and closed forms, Ph.D. thesis, Oxvord University (2004). arXiv:math.DG/0502443

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations