Advertisement

Mathematische Zeitschrift

, Volume 291, Issue 1–2, pp 1–16 | Cite as

Lefschetz duality for intersection (co)homology

  • Martintxo Saralegi-ArangurenEmail author
Article

Abstract

We prove the Lefschetz duality for intersection (co)homology in the framework of \(\partial \)-pseudomanifolds. We work with general perversities and without restriction on the coefficient ring.

Keywords

Intersection homology Lefschetz duality 

Mathematics Subject Classification

55N33 55M05 57N80 

References

  1. 1.
    Chataur, D., Saralegi-Aranguren, M., Tanré, D.: Intersection cohomology. Simplicial blow-up and rational homotopy. In: Memoirs of the American Mathematical Society, vol. 254. American Mathematical Society (2018)Google Scholar
  2. 2.
    Chataur, D., Saralegi-Aranguren, M., Tanré, D.: Homologie d’intersection. Perversités générales et invariance topologique (2016). arXiv:1602.03009
  3. 3.
    Chataur, D., Saralegi-Aranguren, M., Tanré, D.: Blown-up intersection cohomology (2017). arXiv:1701.00684
  4. 4.
    Chataur, D., Saralegi-Aranguren, M., Tanré, D.: Blown-up intersection cochains and Deligne’s sheaves (2018). arXiv:1801.02992
  5. 5.
    Chataur, D., Saralegi-Aranguren, M., Tanré, D.: Poincaré duality with cap products in intersection homology. Adv. Math. 326, 314–351 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Friedman, G.: Superperverse intersection cohomology: stratification (in)dependence. Math. Z. 252(1), 49–70 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Friedman, G.: Singular chain intersection homology for traditional and super-perversities. Trans. Am. Math. Soc. 359(5), 1977–2019 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Friedman, G.: Singular intersection homology. Cambridge University Press (to appear). http://faculty.tcu.edu/gfriedman/IHbook.pdf
  9. 9.
    Friedman, G., McClure, J.E.: Cup and cap products in intersection (co)homology. Adv. Math. 240, 383–426 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Goresky, M., MacPherson, R.: Intersection homology theory. Topology 19(2), 135–162 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Goresky, M., MacPherson, R.: Intersection homology. II. Invent. Math. 72(1), 77–129 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    MacPherson, R.: Intersection Homology and Perverse Sheaves. Unpublished AMS Colloquium Lectures, San Francisco (1991)Google Scholar
  13. 13.
    Saralegi-Aranguren, M.: de Rham intersection cohomology for general perversities. Illinois J. Math. 49(3), 737–758 (2005). (electronic)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Valette, G.: A Lefschetz duality for intersection homology. Geom. Dedicata 169, 283–299 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques de Lens EA 2462Université d’ArtoisLens CedexFrance

Personalised recommendations