Correlation of arithmetic functions over \(\mathbb {F}_q[T]\)

  • Ofir GorodetskyEmail author
  • Will Sawin


For a fixed polynomial \(\varDelta \), we study the number of polynomials f of degree n over \({\mathbb {F}}_q\) such that f and \(f+\varDelta \) are both irreducible, an \({\mathbb {F}}_q[T]\)-analogue of the twin primes problem. In the large-q limit, we obtain a lower-order term for this count if we consider non-monic polynomials, which depends on \(\varDelta \) in a manner which is consistent with the Hardy–Littlewood Conjecture. We obtain a saving of q if we consider monic polynomials only and \(\varDelta \) is a scalar. To do this, we use symmetries of the problem to get for free a small amount of averaging in \(\varDelta \). This allows us to obtain additional saving from equidistribution results for L-functions. We do all this in a combinatorial framework that applies to more general arithmetic functions than the indicator function of irreducibles, including the Möbius function and divisor functions.

Mathematics Subject Classification

11N37 11T55 



We wish to thank Lior Bary-Soroker, Ze’ev Rudnick and the anonymous referee for useful comments.


  1. 1.
    Andrade, J.C., Bary-Soroker, L., Rudnick, Z.: Shifted convolution and the Titchmarsh divisor problem over \({\mathbb{F}}_q[t]\). Philos. Trans. R. Soc. A 373(2040), 20140308, 18 (2015)CrossRefGoogle Scholar
  2. 2.
    Bary-Soroker, L.: Hardy-Littlewood tuple conjecture over large finite fields. Int. Math. Res. Not. IMRN 2014(2), 568–575 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bary-Soroker, L., Stix, J.: Cubic twin prime polynomials are counted by a modular form. arXiv preprint arXiv:1711.05564, 2017. To appear in Canadian Journal of Mathematics
  4. 4.
    Bender, A. O., Pollack, P.: On quantitative analogues of the Goldbach and twin prime conjectures over \({{\mathbb{F}}}_q[t]\). arXiv preprint arXiv:0912.1702, (2009)
  5. 5.
    Carlitz, L.: The Arithmetic of Polynomials in a Galois Field. Am. J. Math. 54(1), 39–50 (1932)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Carmon, D.: The autocorrelation of the Möbius function and Chowla’s conjecture for the rational function field in characteristic 2. Philos. Trans. R. Soc. A 373(2040), 20140311, 14 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Carmon, D., Rudnick, Z.: The autocorrelation of the Möbius function and Chowla’s conjecture for the rational function field. Q. J. Math. 65(1), 53–61 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Castillo, A., Hall, C., Lemke Oliver, R.J., Pollack, P., Thompson, L.: Bounded gaps between primes in number fields and function fields. Proc. Am. Math. Soc. 143(7), 2841–2856 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chowla, S.: The Riemann Hypothesis and Hilbert’s Tenth Problem. Mathematics and Its Applications, vol. 4. Gordon and Breach Science Publishers, New York (1965)zbMATHGoogle Scholar
  10. 10.
    Conrey, J.B., Gonek, S.M.: High moments of the Riemann zeta-function. Duke Math. J. 107(3), 577–604 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Effinger, G.W., Hayes, D.R.: Additive Number Theory of Polynomials Over a Finite Field. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1991). (Oxford Science Publications)zbMATHGoogle Scholar
  12. 12.
    Gamburd, A.: Some applications of symmetric functions theory in random matrix theory. In Ranks of elliptic curves and random matrix theory, volume 341 of London Math. Soc. Lecture Note Ser., pages 143–169. Cambridge University Press, Cambridge, (2007)Google Scholar
  13. 13.
    Hardy, G.H., Littlewood, J.E.: Some problems of ‘Partitio numerorum’; III: on the expression of a number as a sum of primes. Acta Math. 44(1), 1–70 (1923)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hast, D. R., Matei, V.: Higher moments of arithmetic functions in short intervals: a geometric perspective. International Mathematics Research Notices, page rnx310, (2018)Google Scholar
  15. 15.
    Hayes, D.R.: The distribution of irreducibles in \({\rm GF}[q,\, x]\). Trans. Am. Math. Soc. 117, 101–127 (1965)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ingham, A.E.: Some asymptotic formulae in the theory of numbers. J. Lond. Math. Soc. 2(3), 202–208 (1927)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ivić, A.: The general additive divisor problem and moments of the zeta-function. In New trends in probability and statistics, Vol. 4 (Palanga, 1996), pages 69–89. VSP, Utrecht, (1997)Google Scholar
  18. 18.
    Katz, N.M.: Sums of Betti numbers in arbitrary characteristic. Finite Fields Appl. 7, 29–44 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Katz, N.M.: On a question of Keating and Rudnick about primitive Dirichlet characters with squarefree conductor. Int. Math. Res. Not. IMRN 2013(14), 3221–3249 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Katz, N.M.: Witt vectors and a question of Keating and Rudnick. Int. Math. Res.Not. 2013(16), 3613–3638 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Keating, J.P., Roditty-Gershon, E.: Arithmetic correlations over large finite fields. Int. Math. Res. Not. IMRN 2016(3), 860–874 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Keating, J. P., Roditty-Gershon, E.: Corrigendum to: “Arithmetic correlations over large finite fields. International Mathematics Research Notices, page rny162, (2018)Google Scholar
  23. 23.
    Linnik, J.V.: The dispersion method in binary additive problems. Translated by S. Schuur. American Mathematical Society, Providence (1963)Google Scholar
  24. 24.
    Pollack, P.: A polynomial analogue of the twin prime conjecture. Proc. Am. Math. Soc. 136(11), 3775–3784 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pollack, P.: Simultaneous prime specializations of polynomials over finite fields. Proc. Lond. Math. Soc. (3) 97(3), 545–567 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Rhin, G.: Répartition modulo \(1\) dans un corps de séries formelles sur un corps fini. Dissertationes Math. (Rozprawy Mat.) 95, 75 (1972)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Rodgers, B.: Arithmetic functions in short intervals and the symmetric group. Algebra Number Theory 12(5), 1243–1279 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Rosen, M.: Number theory in function fields, Volume of 210 Graduate Texts in Mathematics. Springer, New York (2002)CrossRefGoogle Scholar
  29. 29.
    Sarnak, P.: Three lectures on Möbius randomness (2011) Accessed 10 Jan 2018
  30. 30.
    Sawin, W.: The equidistribution of \(L\)-functions of Witt vector dirichlet characters over function fields. arXiv:1805.04330 (2018)
  31. 31.
    Sawin, W.: A representation theory approach to integral moments of \(L\)-functions over function fields. arXiv:1810.01303 (2018)
  32. 32.
    Sawin , W., Shusterman, M.: On the Chowla and twin primes conjectures over \({{\mathbb{F}}}_q[t]\). arXiv preprint arXiv:1808.04001 (2019)
  33. 33.
    Schmidt, W. M.: Equations over finite fields. An elementary approach. Lecture Notes in Mathematics, Vol. 536. Springer-Verlag, Berlin-New York, (1976)Google Scholar
  34. 34.
    Weil, A.: Basic number theory. Springer-Verlag, New York-Berlin, third edition, 1974. Die Grundlehren der Mathematischen Wissenschaften, Band 144Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Raymond and Beverly Sackler School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations