Advertisement

The \({\mathbb {A}}_{q,t}\) algebra and parabolic flag Hilbert schemes

  • Erik CarlssonEmail author
  • Eugene Gorsky
  • Anton Mellit
Article
  • 5 Downloads

Abstract

The earlier work of the first and the third name authors introduced the algebra \({\mathbb {A}}_{q,t}\) and its polynomial representation. In this paper we construct an action of this algebra on the equivariant K-theory of certain smooth strata in the flag Hilbert scheme of points on the plane. In this presentation, the fixed points of the torus action correspond to generalized Macdonald polynomials, and the matrix elements of the operators have an explicit presentation.

Notes

Acknowledgements

The authors would like to thank Mikhail Bershtein, Andrei Neguț and Monica Vazirani for the useful discussions. The work of E. G. was partially supported by the NSF grants DMS-1559338 and DMS-1700814, Russian Academic Excellence Project 5-100 and RSF-16-11-10160. The work of A. M. was supported by the Advanced Grant “Arithmetic and Physics of Higgs moduli spaces” No. 320593 of the European Research Council and by the START-Project Y963-N35 of the Austrian Science Fund.

References

  1. 1.
    Biswas, I.: Parabolic bundles as orbifold bundles. Duke Math. J. 88(2), 305–326 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry, pp. 3–12. Birkhuser Inc., Boston pp (1997)zbMATHGoogle Scholar
  3. 3.
    Cherednik, I.: Double Affine Hecke Algebras, vol. 319. Cambridge University Press, Cambridge (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Carlsson, E., Mellit, A.: A proof of the shuffle conjecture. J. Am. Math. Soc. 31(3), 661–697 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ellingsrud, G., Göttsche, L., Lehn, M.: On the cobordism class of the Hilbert scheme of a surface. J. Algebraic Geom. 10, 81–100 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Feigin, B., Finkelberg, M., Negut, A., Rybnikov, L.: Yangians and cohomology rings of Laumon spaces. Sel. Math. 17(3), 573–607 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Feigin, B., Tsymbaliuk, A.: Equivariant \(K\)-theory of Hilbert schemes via shuffle algebra. Kyoto J. Math. 51(4), 831–854 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Garsia, A., Haiman, M.: A remarkable \(q, t\)-Catalan sequence and \(q\)-Lagrange inversion. J. Algebraic Comb. 5, 191–244 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Garsia, A., Haglund, J., Xin, G., Zabrocki, M.: Some New Applications of the Stanley-Macdonald Pieri Rules. The mathematical legacy of Richard P. Stanley, pp. 141–168. American Mathematical Society, Providence, RI (2016)zbMATHGoogle Scholar
  10. 10.
    Gorsky, E., Neguţ, A.: Refined knot invariants and Hilbert schemes. Journal de mathématiques pures et appliquées 104(3), 403–435 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gorsky, E., Neguţ, A., Rasmussen, J.: Flag Hilbert Schemes, Colored Projectors and Khovanov-Rozansky Homology. arXiv preprint arXiv:1608.07308 (2016)
  12. 12.
    Haiman, M.: Combinatorics, symmetric functions, and Hilbert schemes. Curr. Dev. Math. 2002, 39–111 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Haiman, M.: Vanishing theorems and character formulas for the Hilbert scheme of points in the plane. Invent. Math. 149(2), 371–407 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Haglund, J., Haiman, M., Loehr, N., Remmel, J.B., Ulyanov, A.: A combinatorial formula for the character of the diagonal coinvariants. Duke Math. J. 126(2), 195–232 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for nonsymmetric Macdonald polynomials. Am. J. Math. 130(2), 359–383 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hogancamp, M.: Khovanov-Rozansky homology and higher Catalan sequences. arXiv preprint arXiv:1704.01562 (2017)
  17. 17.
    Jordan, D., Vazirani, M.: The rectangular representation of the double affine Hecke algebra via elliptic Schur-Weyl duality. arXiv preprint arXiv:1708.06024 (2017)
  18. 18.
    Lusztig, G.: Equivariant K-theory and representations of Hecke algebras. Proceedings of the American Mathematical Society 94(2), 337–342 (1985)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Mellit, A.: Toric braids and \((m, n)\)-parking functions, arXiv preprint arXiv:1604.07456 (2016)
  20. 20.
    Mellit, A.: Homology of torus knots. arXiv preprint arXiv:1704.07630 (2017)
  21. 21.
    Nakajima, H.: Lectures on Hilbert Schemes of Points Onsurfaces, vol. 18. American Mathematical Society, Providence, RI (1999)Google Scholar
  22. 22.
    Negut, A: Quantum toroidal and shuffle algebras, R-matrices and a conjecture of Kuznetsov. arXiv preprint arXiv:1302.6202 (2013)
  23. 23.
    Negut, A.: Moduli of flags of sheaves and their K-theory. Algebraic Geom. 2(1), 19–43 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Neguţ, A.: Hecke correspondences for smooth moduli spaces of sheaves. arXiv preprint arXiv:1804.03645 (2018)
  25. 25.
    Okounkov, A.: Lectures on K-theoretic computations in enumerative geometry. Geometry of moduli spaces and representation theory., IAS/Park City Math. Ser, vol. 24, pp. 251–380Google Scholar
  26. 26.
    Ram, A.: Affine Hecke algebras and generalized standard Young tableaux. J. Algebra 260(1), 367–415 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Schiffmann, O., Vasserot, E.: The elliptic Hall algebra and the \(K\)-theory of the Hilbert scheme of \({\mathbb{A}}^2\). Duke Math. J. 162(2), 279–366 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Tsymbaliuk, A.: Quantum affine Gelfand-Tsetlin bases and quantum toroidal algebra via K-theory of affine Laumon spaces. Sel. Math. New Ser. 16(2), 173–200 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Thomason, R.W., Trobaugh, T.: Higher Algebraic k-Theory of Schemes and of Derived Categories. The Grothendieck Festschrift, pp. 247–435. Springer, Berlin (1990)Google Scholar
  30. 30.
    Vazirani, M.: Parameterizing Hecke algebra modules: Bernstein-Zelevinsky multisegments, Kleshchev multipartitions, and crystal graphs. Transform. Gr. 7(3), 267–303 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaDavisUSA
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Faculty of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations