Advertisement

On the representation of integers by binary forms

  • C. L. StewartEmail author
  • Stanley Yao Xiao
Article
  • 22 Downloads

Abstract

Let F be a binary form with integer coefficients, non-zero discriminant and degree d with d at least 3. Let \(R_F(Z)\) denote the number of integers of absolute value at most Z which are represented by F. We prove that there is a positive number \(C_F\) such that \(R_F(Z)\) is asymptotic to \(C_F Z^{\frac{2}{d}}\).

Mathematics Subject Classification

Primary 11D45 Secondary 11D59 11E76 

Notes

References

  1. 1.
    Bean, M.A.: The practical computation of areas associated with binary quartic forms. Math. Comput. 66, 1269–1293 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bennett, M.A., Dummigan, N.P., Wooley, T.D.: The representation of integers by binary additive forms. Compos. Math. 111, 15–33 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bombieri, E., Schmidt, W.: On Thue’s equation. Invent. Math. 88, 69–81 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boissire, S., Sarti, A.: Counting lines on surfaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5, 39–52 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Browning, T.D.: Equal sums of two \(kth\) powers. J. Number Theory 96, 293–318 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Buchmann, J., Vollmer, U.: Binary Quadratic Forms: An Algebraic Approach. Springer, New York, Berlin (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Buell, D.A.: Binary Quadratic Forms: Classical Theory and Modern Computations. Springer, New York, Berlin (1989)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cox, D.A.: Primes of the form \(x^2 + ny^2\): Fermat, Class Field Theory and Complex Multiplication. Wiley, Hoboken (1989)zbMATHGoogle Scholar
  9. 9.
    Davenport, H.: On a principle of Lipschitz. J. Lond. Math. Soc. 26, 179–183 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Davis, P.: Gamma Function and Related functions, Handbook of Mathematical Functions (M. Abramowitz and I. Stegun, eds.). Dover Publications, New York (1965)Google Scholar
  11. 11.
    Erdős, P., Mahler, K.: On the number of integers which can be represented by a binary form. J. Lond. Math. Soc. 13, 134–139 (1938)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gauss, C.F.: Disquisitiones Arithmeticae. G. Fleischer, Leipzig (1801)Google Scholar
  13. 13.
    Greaves, G.: Representation of a number by the sum of two fourth powers. Mat. Zametki 55, 47–58 (1994)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hardy, G.H.: Ramanujan. Twelve Lectures on Subjects Suggested by his Life and Work. Cambridge University Press, Cambridge (1940)zbMATHGoogle Scholar
  15. 15.
    Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Oxford University Press, Oxford (1979)zbMATHGoogle Scholar
  16. 16.
    Heath-Brown, D.R.: The density of rational points on cubic surfaces. Acta Arith. 79, 17–30 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Heath-Brown, D.R.: The density of rational points on curves and surfaces. Ann. Math. 2, 553–598 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hooley, C.: On binary cubic forms. J. Reine Angew. Math. 226, 30–87 (1967)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Hooley, C.: On the numbers that are representable as the sum of two cubes. J. Reine Angew. Math. 314, 146–173 (1980)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Hooley, C.: On another sieve method and the numbers that are a sum of two \(h^{th}\) powers. Proc. Lond. Math. Soc. 43, 73–109 (1981)CrossRefzbMATHGoogle Scholar
  21. 21.
    Hooley, C.: On binary quartic forms. J. Reine Angew. Math. 366, 32–52 (1986)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Hooley, C.: On another sieve method and the numbers that are a sum of two \(h^{th}\) powers, II. J. Reine Angew. Math. 475, 55–75 (1996)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Hooley, C.: On binary cubic forms: II. J. Reine Angew. Math. 521, 185–240 (2000)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Hooley, C.: On totally reducible binary forms: I. Proc. Indian Acad. Sci. (Math. Sci.) 111, 249–262 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hooley, C.: On totally reducible binary forms: II. Hardy-Ramanujan J. 25, 22–49 (2002)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Landau, E.: Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen quadrate. Arch. der Math. u Phys. 13, 305–312 (1908)zbMATHGoogle Scholar
  27. 27.
    Mahler, K.: Zur Approximation algebraischer Zahlen. III. (Über die mittlere Anzahl der Darstellungen grosser Zahlen durch binäre Formen). Acta. Math. 62, 91–166 (1933)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Newman, M.: Integral matrices, Pure and Appl. Math. (S. Eilenberg and P. A. Smith, eds.), vol. 45. Academic Press, New York (1972)Google Scholar
  29. 29.
    Salberger, P.: Rational points of bounded height on projective surfaces. Math. Z. 258, 805–826 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Salberger, P.: Counting rational points on projective varieties, Preprint, (2009)Google Scholar
  31. 31.
    Salberger, P.: Uniform bounds for rational points on cubic hypersurfaces, Arithmetic and Geometry, London Math. Soc. Lecture Note Ser.420, Cambridge University Press, Cambridge, 401-421 (2015)Google Scholar
  32. 32.
    Salmon, G.: A treatise on the analytic geometry of three dimensions, 4th edn. Hodges, Figgis, and Co., Dublin (1882)Google Scholar
  33. 33.
    Skinner, C., Wooley, T.D.: Sums of two \(k\)-th powers. J. Reine Angew. Math. 462, 57–68 (1995)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Stewart, C.L.: On the number of solutions of polynomial congruences and Thue equations. J. Am. Math. Soc. 4, 793–835 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Thunder, J.L.: Ann. Math. Decomposable form inequalities 153, 767–804 (2001)Google Scholar
  36. 36.
    Wooley, T.D.: Sums of two cubes. Int. Math. Res. Notices. 4, 181–185 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Xiao, S.Y.: Power-free values of binary forms and the global determinant method. Int. Math. Res. Notices 2017, 5078–5135 (2017)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Xiao, S.Y.: Some results on binary forms and counting rational points on algebraic varieties, Ph.D. Thesis, University of Waterloo (2016)Google Scholar
  39. 39.
    Xiao, S. Y.: On binary cubic and quartic forms, arXiv:1610.09208 [math.NT] (2018)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada
  2. 2.Department of MathematicsUniversity of Toronto, Bahen CentreTorontoCanada

Personalised recommendations