On the support of the bifurcation measure of cubic polynomials

  • Hiroyuki Inou
  • Sabyasachi MukherjeeEmail author


We construct new examples of cubic polynomials with a parabolic fixed point that cannot be approximated by Misiurewicz polynomials. In particular, such parameters admit maximal bifurcations, but do not belong to the support of the bifurcation measure.



  1. 1.
    Bassanelli, G., Berteloot, F.: Bifurcation currents in holomorphic dynamics on \({\mathbb{P}}^k\). J. Reine Angew. Math. 608, 201–235 (2007)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ble, G., Douady, A., Henriksen, C.: Round annuli. Contemporary mathematics: In: the Tradition of Ahlfors and Bers III(355), pp. 71–76 (2004)Google Scholar
  3. 3.
    Branner, B., Hubbard, J.H.: The iteration of cubic polynomials, part I: the global topology of parameter space. Acta Math. 160, 143–206 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Buff, X.: Virtually repelling fixed points. Publ. Matemàtiques 47, 195–209 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    DeMarco, Laura: Dynamics of rational maps: a current on the bifurcation locus. Math. Res. Lett. 8(1–2), 57–66 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    DeMarco, Laura: Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity. Math. Ann. 326(1), 43–73 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dujardin, R., Favre, C.: Distribution of rational maps with a preperiodic critical point. Am. J. Math. 130(4), 979–1032 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Douady, A.: Does a Julia set depend continuously on the polynomial? Complex dynamical systems. Proc. Sympos. Appl. Math. 49, 91–138 (1994)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dujardin, R.: Cubic polynomials: a measurable view on parameter space. In: Schleicher, D., (eds), Complex Dynamics, Families and Friends, pp. 451–490. AK Peters Ltd., Natick (2009)Google Scholar
  10. 10.
    Epstein, A.L.: Infinitesimal Thurston rigidity and the Fatou-Shishikura inequality. Stony Brook I.M.S. (1999) (Preprint) Google Scholar
  11. 11.
    Hubbard, J., Schleicher, D., Sutherland, S.: How to find all roots of complex polynomials by Newton’s method. Invent. Math. 146, 1–33 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Inou, H., Mukherjee, S.: Non-landing parameter rays of the multicorns. Invent. Math. 204, 869–893 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    McMullen, Curtis T.: Complex Dynamics and Renormalization. Annals of Mathematics Studies. Princeton University Press, Princeton (1994)Google Scholar
  14. 14.
    Milnor, J.: Dynamics in One Complex Variable, 3rd edn. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  15. 15.
    Mukherjee, S., Nakane, S., Schleicher, D.: On multicorns and unicorns II: bifurcations in spaces of antiholomorphic polynomials. Ergodic Theory Dyn. Syst. 37, 859–899 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Naishul, V.A.: Topological invariants of analytic and area preserving mappings and their applications to analytic differential equations in \(\mathbb{C}^2\) and \(\mathbb{CP}^2\). Trans. Moscow Math. Soc. 42, 239–250 (1983)Google Scholar
  17. 17.
    Roesch, P.: Cubic polynomials with a parabolic point. Ergodic Theory Dyn. Syst. 30(6), 1843–1867 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Shishikura, M.: Bifurcation of parabolic fixed points. In: The Mandelbrot Set, Theme and Variations, London Mathematical Society Lecture Note Series, vol. 274, pp 325–364. Cambridge University Press, Cambridge (2000)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsKyoto UniversityKyotoJapan
  2. 2.Institute for Mathematical SciencesStony Brook UniversityStony BrookUSA

Personalised recommendations