Advertisement

Index theory in spaces of manifolds

  • Johannes EbertEmail author
Article
  • 22 Downloads

Abstract

We formulate and prove a generalization of the Atiyah-Singer family index theorem in the context of the theory of spaces of manifolds à la Madsen, Tillmann, Weiss, Galatius and Randal-Williams. Our results are for Dirac-type operators linear over arbitrary \(C^*\)-algebras.

Notes

References

  1. 1.
    Adams, J.F.: Infinite Loop Spaces, volume 90 of Annals of Mathematics Studies. Princeton University Press, Princeton (1978)Google Scholar
  2. 2.
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators on compact manifolds. Bull. Am. Math. Soc. 69, 422–433 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators. I. Ann. Math. 2(87), 484–530 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators. IV. Ann. Math. 2(93), 119–138 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Botvinnik, Boris, Ebert, Johannes, Randal-Williams, Oscar: Infinite loop spaces and positive scalar curvature. Invent. Math. 209(3), 749–835 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Connes, A., Skandalis, G.: The longitudinal index theorem for foliations. Publ. Res. Inst. Math. Sci. 20(6), 1139–1183 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dixmier, Jacques, Douady, Adrien: Champs continus d’espaces hilbertiens et de \(C^{\ast } \)-algèbres. Bull. Soc. Math. Fr. 91, 227–284 (1963)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ebert, J.: Elliptic regularity for Dirac operators on families of noncompact manifolds. Preprint, arXiv:1608.01699
  9. 9.
    Ebert, Johannes: A vanishing theorem for the characteristic classes of odd-dimensional manifold bundles. Crelle Journal für die reine und angewandte Mathematik 684, 1–29 (2013)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Galatius, Søren, Randal-Williams, Oscar: Monoids of moduli spaces of manifolds. Geom. Topol. 14(3), 1243–1302 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Galatius, Søren, Tillmann, Ulrike, Madsen, Ib, Weiss, Michael: The homotopy type of the cobordism category. Acta Math. 202(2), 195–239 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Higson, Nigel: A note on the cobordism invariance of the index. Topology 30(3), 439–443 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Higson, Nigel., Guentner, Erik.: Group \(C^\ast \)-Algebras and \(K\)-Theory. In: Doplicher, S., Longo, R. (eds.) Noncommutative Geometry, volume 1831 of Lecture Notes in Mathematics, pp. 137–251. Springer (2004)Google Scholar
  14. 14.
    Higson, Nigel, Roe, John: Analytic \(K\)-homology. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000). Oxford Science PublicationszbMATHGoogle Scholar
  15. 15.
    Madsen, Ib, Tillmann, Ulrike: The stable mapping class group and \(Q(\mathbb{C}\mathbb{P}^\infty _+)\). Invent. Math. 145(3), 509–544 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Madsen, Ib, Weiss, Michael: The stable moduli space of Riemann surfaces: Mumford’s conjecture. Ann. of Math. (2) 165(3), 843–941 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Miščenko, A.S., Fomenko, A.T.: The index of elliptic operators over \(C^{\ast } \)-algebras. Izv. Akad. Nauk SSSR Ser. Mat. 43(4), 831–859, 967 (1979)MathSciNetGoogle Scholar
  18. 18.
    Palais, R.S.: Seminar on the Atiyah-Singer index theorem. With contributions by M. F. Atiyah, A. Borel, E.E. Floyd, R.T. Seeley, W. Shih, R. Solovay. Annals of Mathematics Studies, No. 57. Princeton University Press, Princeton, N.J., (1965)Google Scholar
  19. 19.
    Roe, J: Partitioning noncompact manifolds and the dual Toeplitz problem. In: Operator algebras and applications, Vol. 1, volume 135 of London Math. Soc. Lecture Note Ser., pages 187–228. Cambridge Univ. Press, Cambridge, (1988)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität MünsterMünsterGermany

Personalised recommendations